Self-Assembly of a Dipeptide with a Reduced Amount of Copper into Antifungal and Antibacterial Particles

Michaela Kaganovich, Mohammad Taha, Uri Zig, Edit Y. Tshuva, Deborah E. Shalev, Abraham Gamliel, Meital Reches*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

With the growing concern over the environmental impact and health risks associated with conventional pesticides, there is a great need for developing safer and more sustainable alternatives. This study demonstrates the self-assembly of antimicrobial and antifungal spherical particles by a dipeptide utilizing a reduced amount of copper salt compared to the commonly employed formulation. The particles can be sprayed on a surface and form an antimicrobial coating. The effectiveness of the coating against the bacteria Pectobacterium brasiliense, a common pathogen affecting potato crops, was demonstrated, as the coating reduced the bacterial load by 7.3 log. Moreover, a comprehensive field trial was conducted, where the formulation was applied to potato seeds. Remarkably, it exhibited good efficacy against three prevalent potato pathogens (P. brasiliense, Pythium spp., and Spongospora subterranea) while demonstrating no phytotoxic effects on the potatoes. These findings highlight the tremendous potential of this formulation as a nonphytotoxic alternative to replace hazardous pesticides currently available in the market.

Original languageAmerican English
Pages (from-to)1018-1026
Number of pages9
JournalBiomacromolecules
Volume25
Issue number2
DOIs
StatePublished - 12 Feb 2024

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

Fingerprint

Dive into the research topics of 'Self-Assembly of a Dipeptide with a Reduced Amount of Copper into Antifungal and Antibacterial Particles'. Together they form a unique fingerprint.

Cite this