TY - JOUR
T1 - Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other
AU - Nesher, Nir
AU - Levy, Guy
AU - Grasso, Frank W.
AU - Hochner, Binyamin
PY - 2014/6/2
Y1 - 2014/6/2
N2 - Controlling movements of flexible arms is a challenging task for the octopus because of the virtually infinite number of degrees of freedom (DOFs) [1, 2]. Octopuses simplify this control by using stereotypical motion patterns that reduce the DOFs, in the control space, to a workable few [2]. These movements are triggered by the brain and are generated by motor programs embedded in the peripheral neuromuscular system of the arm [3-5]. The hundreds of suckers along each arm have a tendency to stick to almost any object they contact [6-9]. The existence of this reflex could pose significant problems with unplanned interactions between the arms if not appropriately managed. This problem is likely to be accentuated because it is accepted that octopuses are "not aware of their arms" [10-14]. Here we report of a self-recognition mechanism that has a novel role in motor control, restraining the arms from interfering with each other. We show that the suckers of amputated arms never attach to octopus skin because a chemical in the skin inhibits the attachment reflex of the suckers. The peripheral mechanism appears to be overridden by central control because, in contrast to amputated arms, behaving octopuses sometime grab amputated arms. Surprisingly, octopuses seem to identify their own amputated arms, as they treat arms of other octopuses like food more often than their own. This self-recognition mechanism is a novel peripheral component in the embodied organization of the adaptive interactions between the octopus's brain, body, and environment [15, 16]. Video Abstract
AB - Controlling movements of flexible arms is a challenging task for the octopus because of the virtually infinite number of degrees of freedom (DOFs) [1, 2]. Octopuses simplify this control by using stereotypical motion patterns that reduce the DOFs, in the control space, to a workable few [2]. These movements are triggered by the brain and are generated by motor programs embedded in the peripheral neuromuscular system of the arm [3-5]. The hundreds of suckers along each arm have a tendency to stick to almost any object they contact [6-9]. The existence of this reflex could pose significant problems with unplanned interactions between the arms if not appropriately managed. This problem is likely to be accentuated because it is accepted that octopuses are "not aware of their arms" [10-14]. Here we report of a self-recognition mechanism that has a novel role in motor control, restraining the arms from interfering with each other. We show that the suckers of amputated arms never attach to octopus skin because a chemical in the skin inhibits the attachment reflex of the suckers. The peripheral mechanism appears to be overridden by central control because, in contrast to amputated arms, behaving octopuses sometime grab amputated arms. Surprisingly, octopuses seem to identify their own amputated arms, as they treat arms of other octopuses like food more often than their own. This self-recognition mechanism is a novel peripheral component in the embodied organization of the adaptive interactions between the octopus's brain, body, and environment [15, 16]. Video Abstract
UR - http://www.scopus.com/inward/record.url?scp=84902209782&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2014.04.024
DO - 10.1016/j.cub.2014.04.024
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 24835454
AN - SCOPUS:84902209782
SN - 0960-9822
VL - 24
SP - 1271
EP - 1275
JO - Current Biology
JF - Current Biology
IS - 11
ER -