Self-stabilizing uncoupled dynamics

Aaron D. Jaggard, Neil Lutz, Michael Schapira, Rebecca N. Wright

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Dynamics in a distributed system are self-stabilizing if they are guaranteed to reach a stable state regardless of how the system is initialized. Game dynamics are uncoupled if each player’s behavior is independent of the other players’ preferences. Recognizing an equilibrium in this setting is a distributed computational task. Self-stabilizing uncoupled dynamics, then, have both resilience to arbitrary initial states and distribution of knowledge. We study these dynamics by analyzing their behavior in a bounded-recall synchronous environment. We determine, for every “size” of game, the minimum number of periods of play that stochastic (randomized) players must recall in order for uncoupled dynamics to be self-stabilizing. We also do this for the special case when the game is guaranteed to have unique best replies. For deterministic players, we demonstrate two self-stabilizing uncoupled protocols. One applies to all games and uses three steps of recall. The other uses two steps of recall and applies to games where each player has at least four available actions. For uncoupled deterministic players, we prove that a single step of recall is insufficient to achieve self-stabilization, regardless of the number of available actions.

Bibliographical note

Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2014.

Fingerprint

Dive into the research topics of 'Self-stabilizing uncoupled dynamics'. Together they form a unique fingerprint.

Cite this