Abstract
We address the semistable reduction conjecture of Abramovich and Karu: we prove that every surjective morphism of complex projective varieties can be modified to a semistable one. The key ingredient is a combinatorial result on triangulating lattice Cayley polytopes.
Original language | English |
---|---|
State | Published - 2019 |
Event | 31st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2019 - Ljubljana, Slovenia Duration: 1 Jul 2019 → 5 Jul 2019 |
Conference
Conference | 31st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2019 |
---|---|
Country/Territory | Slovenia |
City | Ljubljana |
Period | 1/07/19 → 5/07/19 |
Bibliographical note
Publisher Copyright:© FPSAC 2019 - 31st International Conference on Formal Power Series and Algebraic Combinatorics. All rights reserved.
Keywords
- Cayley polytopes
- Mixed subdivisions
- Semistable reduction