Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast

Himanshu Sinha, Lior David, Renata C. Pascon, Sandra Clauder-Münster, Sujatha Krishnakumar, Michelle Nguyen, Getao Shi, Jed Dean, Ronald W. Davis, Peter J. Oefner, John H. McCusker, Lars M. Steinmetz

Research output: Contribution to journalArticlepeer-review

119 Scopus citations

Abstract

Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.

Original languageEnglish
Pages (from-to)1661-1670
Number of pages10
JournalGenetics
Volume180
Issue number3
DOIs
StatePublished - Nov 2008

Fingerprint

Dive into the research topics of 'Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast'. Together they form a unique fingerprint.

Cite this