Abstract
We show that the standard stochastic gradient decent (SGD) algorithm is guaranteed to learn, in polynomial time, a function that is competitive with the best function in the conjugate kernel space of the network, as defined in Daniely et al. [2016]. The result holds for log-depth networks from a rich family of architectures. To the best of our knowledge, it is the first polynomial-time guarantee for the standard neural network learning algorithm for networks of depth more that two. As corollaries, it follows that for neural networks of any depth between 2 and log(n), SGD is guaranteed to learn, in polynomial time, constant degree polynomials with polynomially bounded coefficients. Likewise, it follows that SGD on large enough networks can learn any continuous function (not in polynomial time), complementing classical expressivity results.
Original language | English |
---|---|
Pages (from-to) | 2423-2431 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2017-December |
State | Published - 2017 |
Event | 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States Duration: 4 Dec 2017 → 9 Dec 2017 |
Bibliographical note
Publisher Copyright:© 2017 Neural information processing systems foundation. All rights reserved.