Abstract
The combination of a superconductor with a magnetically inhomogeneous material has been established as an efficient mechanism for the generation of long-ranged spin-polarized (spin-triplet) Cooper pairs. Evidence for this mechanism, however, has been demonstrated based on studies done on thin-film multilayers, where the strong bonds existing at the interface between the superconductor and the magnetic material should in principle enhance proximity effects and strengthen any electronic correlations. Here, we fabricate devices based on van der Waals (vdW) stacks of flakes of the NbS2 combined with flakes of Cr1/3NbS2, which has a built-in magnetic inhomogeneity due to its helimagnetic spin texture at low temperatures. We find that the critical temperature of these vdW heterostructures is strongly dependent on the magnetic state of Cr1/3NbS2, whose degree of magnetic inhomogeneity can be controlled via an applied magnetic field. Our results demonstrate evidence for the generation of long-ranged spin-triplet pairs across the Cr1/3NbS2/NbS2 vdW interface.
Original language | English |
---|---|
Article number | L012046 |
Journal | Physical Review Research |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2024 |
Bibliographical note
Publisher Copyright:© 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.