TY - JOUR
T1 - Silica tethered with poly(ethylene and/propylene) oxide as supports for polyoxometalates in catalytic oxidation
AU - Cohen, Michal
AU - Neumann, Ronny
PY - 1999/10/20
Y1 - 1999/10/20
N2 - Use of the sol-gel technique has allowed the preparation of silicates with polyfunctionalized surfaces. In this way, silicates containing combinations of hydrophilic poly(ethylene oxide) (PEO), hydrophobic poly(propylene oxide) (PPO) and cationic quaternary ammonium (Q+) groups were prepared. These silicates coupled with polyoxometalates led to active catalytic assemblies. In one application, H5PV2Mo10O40 was complexed to PEO-SiO2 and used to catalyze the oxydehydrogenation of dihydroanthracene with improved activity and selectivity compared to the non-supported catalyst. Recycle of the assembly was possible. In a further use, [ZnWMn2/(II)(ZnW9O34)2]12-, bound by a Q+ moiety to the silicate surface modified also with polyethers formed an assembly catalytically active, with excellent recycle for the epoxidation of alkenes with aqueous 30% H2O2. A silicate with a hydrophobic (PPO)/hydrophilic (PEO) balance showed the highest activity due to the optimal contact of the apolar hydrocarbon and the aqueous oxidant. Dispersion of the silicate in a solvent depended much on the polyether tether. Hydrophilic PEO-SiO2 formed a homogeneous gel in water but was not dispersed in chloroform. For hydrophobic PPO-SiO2, the opposite was observed. Maximal dispersion together with ease of recovery was possible with intermediate 10% PEO, 10% PPO-SiO2.
AB - Use of the sol-gel technique has allowed the preparation of silicates with polyfunctionalized surfaces. In this way, silicates containing combinations of hydrophilic poly(ethylene oxide) (PEO), hydrophobic poly(propylene oxide) (PPO) and cationic quaternary ammonium (Q+) groups were prepared. These silicates coupled with polyoxometalates led to active catalytic assemblies. In one application, H5PV2Mo10O40 was complexed to PEO-SiO2 and used to catalyze the oxydehydrogenation of dihydroanthracene with improved activity and selectivity compared to the non-supported catalyst. Recycle of the assembly was possible. In a further use, [ZnWMn2/(II)(ZnW9O34)2]12-, bound by a Q+ moiety to the silicate surface modified also with polyethers formed an assembly catalytically active, with excellent recycle for the epoxidation of alkenes with aqueous 30% H2O2. A silicate with a hydrophobic (PPO)/hydrophilic (PEO) balance showed the highest activity due to the optimal contact of the apolar hydrocarbon and the aqueous oxidant. Dispersion of the silicate in a solvent depended much on the polyether tether. Hydrophilic PEO-SiO2 formed a homogeneous gel in water but was not dispersed in chloroform. For hydrophobic PPO-SiO2, the opposite was observed. Maximal dispersion together with ease of recovery was possible with intermediate 10% PEO, 10% PPO-SiO2.
KW - ORMOSIL
KW - Oxidation
KW - Polyether
KW - Polyoxometalate
KW - Sol-gel
UR - http://www.scopus.com/inward/record.url?scp=0033589317&partnerID=8YFLogxK
U2 - 10.1016/S1381-1169(99)00089-8
DO - 10.1016/S1381-1169(99)00089-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0033589317
SN - 1381-1169
VL - 146
SP - 291
EP - 298
JO - Journal of Molecular Catalysis A: Chemical
JF - Journal of Molecular Catalysis A: Chemical
IS - 1-2
ER -