Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance

Shani Ben-Ari, Keren Ofek, Shahar Barbash, Hanoch Meiri, Eugenia Kovalev, David Samuel Greenberg, Hermona Soreq*, Shai Shoham

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito\xE2\x80\x90toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.

Original languageEnglish
Pages (from-to)555-568
Number of pages14
JournalJournal of Cellular and Molecular Medicine
Volume16
Issue number3
DOIs
StatePublished - Mar 2012

Keywords

  • Exercise
  • Genetic background
  • Glutamate
  • Kir6.1
  • Potassium channels
  • Stroke

Fingerprint

Dive into the research topics of 'Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance'. Together they form a unique fingerprint.

Cite this