TY - JOUR
T1 - Single-Ion Li+, Na+, and Mg2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework
AU - Park, Sarah S.
AU - Tulchinsky, Yuri
AU - Dinca, Mircea
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/9/27
Y1 - 2017/9/27
N2 - A novel Cu(II)-azolate metal-organic framework (MOF) with tubular pores undergoes a reversible single crystal to single crystal transition between neutral and anionic phases upon reaction with stoichiometric amounts of halide or pseudohalide salts. The stoichiometric transformation between the two phases allows loading of record amounts of charge-balancing Li+, Na+, and Mg2+ ions for MOFs. Whereas the halide/pseudohalide anions are bound to the metal centers and thus stationary, the cations move freely within the one-dimensional pores, giving rise to single-ion solid electrolytes. The respective Li+-, Na+-, and Mg2+-loaded materials exhibit high ionic conductivity values of 4.4 × 10-5, 1.8 × 10-5, and 8.8 × 10-7 S/cm. With addition of LiBF4, the Li+ conductivity improves to 4.8 × 10-4 S/cm. These are the highest values yet observed for MOF solid electrolytes.
AB - A novel Cu(II)-azolate metal-organic framework (MOF) with tubular pores undergoes a reversible single crystal to single crystal transition between neutral and anionic phases upon reaction with stoichiometric amounts of halide or pseudohalide salts. The stoichiometric transformation between the two phases allows loading of record amounts of charge-balancing Li+, Na+, and Mg2+ ions for MOFs. Whereas the halide/pseudohalide anions are bound to the metal centers and thus stationary, the cations move freely within the one-dimensional pores, giving rise to single-ion solid electrolytes. The respective Li+-, Na+-, and Mg2+-loaded materials exhibit high ionic conductivity values of 4.4 × 10-5, 1.8 × 10-5, and 8.8 × 10-7 S/cm. With addition of LiBF4, the Li+ conductivity improves to 4.8 × 10-4 S/cm. These are the highest values yet observed for MOF solid electrolytes.
UR - http://www.scopus.com/inward/record.url?scp=85030108088&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b06197
DO - 10.1021/jacs.7b06197
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28880535
AN - SCOPUS:85030108088
SN - 0002-7863
VL - 139
SP - 13260
EP - 13263
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 38
ER -