Abstract
Single-mode, air-cladded optical waveguides have wavelength scale diameters, making them very fragile and difficult to handle and yet highly desirable for sensing and inter-chip photonic interconnects. These contradictory qualities are resolved in this work by supporting the optical waveguide with a nano-fin structure attached to a substrate, narrow enough and sufficiently tall to minimally impact the wave-guiding metrics of the solid core while providing structural mechanical integrity. The design considerations for the nano-fin-supported waveguide and its realization using a commercial direct laser writing system based on two-photon activation of a photopolymer is reported herein. The 3D printed waveguides are characterized and experimentally assessed, demonstrating low birefringence and an estimated propagation loss for LP01x and LP01y of 2.9 dB/mm and 3.4 dB/mm, respectively, attributed to surface roughness and the relatively high refractive index contrast with air.
Original language | English |
---|---|
Article number | 6327 |
Journal | Applied Sciences (Switzerland) |
Volume | 11 |
Issue number | 14 |
DOIs | |
State | Published - 2 Jul 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Direct laser writing
- Nanoscribe
- Optical waveguide
- Propagation loss
- Surface roughness