TY - JOUR
T1 - Singular games in bv'NA
AU - Neyman, Abraham
PY - 2010/7
Y1 - 2010/7
N2 - Every simple monotonic game in bv'NA is a weighted majority game. Every game vj{cyrillic, ukrainian}bv'NA has a representation v=u+∑i=1∞fioμi where uj{cyrillic, ukrainian}pNA, μij{cyrillic, ukrainian}NA1 and fi is a sequence of bv' functions with ∑i=1∞{norm of matrix}fi{norm of matrix}<∞. Moreover, the representation is unique if we require fi to be singular and that for every i≠j, μi≠μj.
AB - Every simple monotonic game in bv'NA is a weighted majority game. Every game vj{cyrillic, ukrainian}bv'NA has a representation v=u+∑i=1∞fioμi where uj{cyrillic, ukrainian}pNA, μij{cyrillic, ukrainian}NA1 and fi is a sequence of bv' functions with ∑i=1∞{norm of matrix}fi{norm of matrix}<∞. Moreover, the representation is unique if we require fi to be singular and that for every i≠j, μi≠μj.
KW - Game theory
KW - Non-atomic games
UR - http://www.scopus.com/inward/record.url?scp=77955267784&partnerID=8YFLogxK
U2 - 10.1016/j.jmateco.2008.04.003
DO - 10.1016/j.jmateco.2008.04.003
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77955267784
SN - 0304-4068
VL - 46
SP - 384
EP - 387
JO - Journal of Mathematical Economics
JF - Journal of Mathematical Economics
IS - 4
ER -