TY - JOUR
T1 - Skeletal muscle content of membrane glycoprotein PC-1 in obesity
T2 - Relationship to muscle glucose transport
AU - Youngren, Jack F.
AU - Maddux, Betty A.
AU - Sasson, Shlomo
AU - Sbraccia, Paolo
AU - Tapscott, Edward B.
AU - Swanson, Melvin S.
AU - Dohm, G. Lynis
AU - Goldfine, Ira D.
PY - 1996
Y1 - 1996
N2 - Membrane glycoprotein PC-1, an inhibitor of insulin signaling, produces insulin resistance when overexpressed in cells transfected with PC-1 cDNA. In the present study, we determined whether PC-1 plays a role in the insulin resistance of skeletal muscle in obesity. Rectus abdominus muscle biopsies were taken from patients undergoing elective surgery. Subjects included both NIDDM patients (n = 14) and nondiabetic patients (n = 34) across a wide range of BMI values (19.5-90.1). Insulin-stimulated glucose transport was measured in incubated muscle strips, and PC-1 content, enzymatic activity, and insulin receptor content were measured in solubilized muscle extracts. Increasing BMI correlated with both an increase in the content of PC-1 in muscle (r = 0.55, P < 0.001) and a decrease in insulin stimulation of muscle glucose transport (r = -0.58, P = 0.008). NIDDM had no effect on either PC-1 content or glucose transport for any given level of obesity. Insulin stimulation of muscle glucose transport was negatively related to muscle PC-1 content (r = -0.68, P = 0.001) and positively related to insulin receptor content (r = 0.60, P = 0.005). Multivariate analysis indicated that both skeletal muscle PC-1 content and insulin receptor content, but not BMI, were independent predictors of insulin-stimulated glucose transport. Muscle PC-1 content accounted for 42% and insulin receptor content for 17% of the variance in glucose transport values. These studies raise the possibility that increased expression of PC-1 and a decreased insulin receptor content in skeletal muscle may be involved in the insulin resistance of obesity.
AB - Membrane glycoprotein PC-1, an inhibitor of insulin signaling, produces insulin resistance when overexpressed in cells transfected with PC-1 cDNA. In the present study, we determined whether PC-1 plays a role in the insulin resistance of skeletal muscle in obesity. Rectus abdominus muscle biopsies were taken from patients undergoing elective surgery. Subjects included both NIDDM patients (n = 14) and nondiabetic patients (n = 34) across a wide range of BMI values (19.5-90.1). Insulin-stimulated glucose transport was measured in incubated muscle strips, and PC-1 content, enzymatic activity, and insulin receptor content were measured in solubilized muscle extracts. Increasing BMI correlated with both an increase in the content of PC-1 in muscle (r = 0.55, P < 0.001) and a decrease in insulin stimulation of muscle glucose transport (r = -0.58, P = 0.008). NIDDM had no effect on either PC-1 content or glucose transport for any given level of obesity. Insulin stimulation of muscle glucose transport was negatively related to muscle PC-1 content (r = -0.68, P = 0.001) and positively related to insulin receptor content (r = 0.60, P = 0.005). Multivariate analysis indicated that both skeletal muscle PC-1 content and insulin receptor content, but not BMI, were independent predictors of insulin-stimulated glucose transport. Muscle PC-1 content accounted for 42% and insulin receptor content for 17% of the variance in glucose transport values. These studies raise the possibility that increased expression of PC-1 and a decreased insulin receptor content in skeletal muscle may be involved in the insulin resistance of obesity.
UR - http://www.scopus.com/inward/record.url?scp=0029742448&partnerID=8YFLogxK
U2 - 10.2337/diab.45.10.1324
DO - 10.2337/diab.45.10.1324
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8826966
AN - SCOPUS:0029742448
SN - 0012-1797
VL - 45
SP - 1324
EP - 1328
JO - Diabetes
JF - Diabetes
IS - 10
ER -