TY - JOUR
T1 - Slow growth improves compensation ability
T2 - Examining growth rate and starvation endurance in pit-building antlions from semi-arid and hyper-arid regions
AU - Rotkopf, Ron
AU - Alcalay, Yehonatan
AU - Bar-Hanin, Einav
AU - Barkae, Erez David
AU - Ovadia, Ofer
PY - 2013/11
Y1 - 2013/11
N2 - Different environments are expected to exert differential selective pressures, often generating distinct sets of traits in organisms inhabiting different geographic regions. Starvation endurance is an important trait for organisms in harsh (i.e., extreme climate and/or biotically poor) and unpredictable environments. This is especially true for sit-and-wait predators, such as antlions, which experience stronger fluctuations in prey arrivals than do actively searching predators. We conducted an experimental comparison of starvation endurance in pit-building antlions, originating from semi-arid and hyper-arid environments. We hypothesized that individuals from the climatically harsher and biotically poor environment (i.e., hyper-arid) should be better adapted to endure long starvation periods. Additionally, we posited that faster-growing individuals are expected to be more sensitive to starvation because of their need to sustain higher metabolic rates. We found that antlions originating from the semi-arid region maintained higher activity levels, which led to slightly higher mass loss rates during starvation, but enabled faster recovery when food supply was renewed. Conversely, antlions originating from the hyper-arid region had lower activity levels, consistent with their lower rate of mass loss during starvation, but this came at the expense of decreased response to prey and lower growth rate when food became available again. Each strategy holds its advantages for coping with long starvation periods, and we cannot say decisively which strategy is better. Results from both regions were consistent with the predictions of the growth compensation phenomenon: antlions that were fed less frequently pre-starvation grew at faster rates when food supply was renewed. Our study demonstrates that individuals originating from different environments adopt different strategies in order to endure starvation, exemplifying antlions' ability to compensate for mass lost during starvation.
AB - Different environments are expected to exert differential selective pressures, often generating distinct sets of traits in organisms inhabiting different geographic regions. Starvation endurance is an important trait for organisms in harsh (i.e., extreme climate and/or biotically poor) and unpredictable environments. This is especially true for sit-and-wait predators, such as antlions, which experience stronger fluctuations in prey arrivals than do actively searching predators. We conducted an experimental comparison of starvation endurance in pit-building antlions, originating from semi-arid and hyper-arid environments. We hypothesized that individuals from the climatically harsher and biotically poor environment (i.e., hyper-arid) should be better adapted to endure long starvation periods. Additionally, we posited that faster-growing individuals are expected to be more sensitive to starvation because of their need to sustain higher metabolic rates. We found that antlions originating from the semi-arid region maintained higher activity levels, which led to slightly higher mass loss rates during starvation, but enabled faster recovery when food supply was renewed. Conversely, antlions originating from the hyper-arid region had lower activity levels, consistent with their lower rate of mass loss during starvation, but this came at the expense of decreased response to prey and lower growth rate when food became available again. Each strategy holds its advantages for coping with long starvation periods, and we cannot say decisively which strategy is better. Results from both regions were consistent with the predictions of the growth compensation phenomenon: antlions that were fed less frequently pre-starvation grew at faster rates when food supply was renewed. Our study demonstrates that individuals originating from different environments adopt different strategies in order to endure starvation, exemplifying antlions' ability to compensate for mass lost during starvation.
KW - Clinal variation
KW - Growth compensation
KW - Life-history
KW - Local adaptation
KW - Myrmeleontidae
KW - Trade-off
UR - http://www.scopus.com/inward/record.url?scp=84887615180&partnerID=8YFLogxK
U2 - 10.1007/s10682-013-9644-0
DO - 10.1007/s10682-013-9644-0
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84887615180
SN - 0269-7653
VL - 27
SP - 1129
EP - 1144
JO - Evolutionary Ecology
JF - Evolutionary Ecology
IS - 6
ER -