Abstract
During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens reduce their feeding of larvae and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment with the bumble bee Bombus terrestris, we tested the hypothesis that workers regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage nest-founding queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg laying, and likewise, late-stage nest-founding queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behaviors were negatively correlated. We used Agilent microarrays designed from B. terrestris brain expressed sequenced tags (ESTs) to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect being much stronger in late-stage founding queens. This study provides new insights into how the transition from feeding brood to specialization on reproduction in queen bumble bees is regulated during the nest initiation phase of the colony cycle.
Original language | English |
---|---|
Pages (from-to) | 3474-3482 |
Number of pages | 9 |
Journal | Journal of Experimental Biology |
Volume | 216 |
Issue number | 18 |
DOIs | |
State | Published - Sep 2013 |
Keywords
- Genomics
- Microarrays
- Nest initiation
- Social evolution