TY - JOUR
T1 - Solving the thoracic inverse problem in the fruit fly
AU - Pons, Arion
AU - Perl, Illy
AU - Ben-Dov, Omri
AU - Maya, Roni
AU - Beatus, Tsevi
N1 - Publisher Copyright:
© 2023 The Author(s). Published by IOP Publishing Ltd.
PY - 2023/5/5
Y1 - 2023/5/5
N2 - In many insect species, the thoracic exoskeletal structure plays a crucial role in enabling flight. In the dipteran indirect flight mechanism, thoracic cuticle acts as a transmission link between the flight muscles and the wings, and is thought to act as an elastic modulator: improving flight motor efficiency thorough linear or nonlinear resonance. But peering closely into the drivetrain of tiny insects is experimentally difficult, and the nature of this elastic modulation is unclear. Here, we present a new inverse-problem methodology to surmount this difficulty. In a data synthesis process, we integrate literature-reported rigid-wing aerodynamic and musculoskeletal data into a planar oscillator model for the fruit fly Drosophila melanogaster, and use this integrated data to identify several surprising properties of the fly’s thorax. We find that fruit flies likely have an energetic need for motor resonance: absolute power savings due to motor elasticity range from 0%-30% across literature-reported datasets, averaging 16%. However, in all cases, the intrinsic high effective stiffness of the active asynchronous flight muscles accounts for all elastic energy storage required by the wingbeat. The D. melanogaster flight motor should be considered as a system in which the wings are resonant with the elastic effects of the motor’s asynchronous musculature, and not with the elastic effects of the thoracic exoskeleton. We discover also that D. melanogaster wingbeat kinematics show subtle adaptions that ensure that wingbeat load requirements match muscular forcing. Together, these newly-identified properties suggest a novel conceptual model of the fruit fly’s flight motor: a structure that is resonant due to muscular elasticity, and is thereby intensely concerned with ensuring that the primary flight muscles are operating efficiently. Our inverse-problem methodology sheds new light on the complex behaviour of these tiny flight motors, and provides avenues for further studies in a range of other insect species.
AB - In many insect species, the thoracic exoskeletal structure plays a crucial role in enabling flight. In the dipteran indirect flight mechanism, thoracic cuticle acts as a transmission link between the flight muscles and the wings, and is thought to act as an elastic modulator: improving flight motor efficiency thorough linear or nonlinear resonance. But peering closely into the drivetrain of tiny insects is experimentally difficult, and the nature of this elastic modulation is unclear. Here, we present a new inverse-problem methodology to surmount this difficulty. In a data synthesis process, we integrate literature-reported rigid-wing aerodynamic and musculoskeletal data into a planar oscillator model for the fruit fly Drosophila melanogaster, and use this integrated data to identify several surprising properties of the fly’s thorax. We find that fruit flies likely have an energetic need for motor resonance: absolute power savings due to motor elasticity range from 0%-30% across literature-reported datasets, averaging 16%. However, in all cases, the intrinsic high effective stiffness of the active asynchronous flight muscles accounts for all elastic energy storage required by the wingbeat. The D. melanogaster flight motor should be considered as a system in which the wings are resonant with the elastic effects of the motor’s asynchronous musculature, and not with the elastic effects of the thoracic exoskeleton. We discover also that D. melanogaster wingbeat kinematics show subtle adaptions that ensure that wingbeat load requirements match muscular forcing. Together, these newly-identified properties suggest a novel conceptual model of the fruit fly’s flight motor: a structure that is resonant due to muscular elasticity, and is thereby intensely concerned with ensuring that the primary flight muscles are operating efficiently. Our inverse-problem methodology sheds new light on the complex behaviour of these tiny flight motors, and provides avenues for further studies in a range of other insect species.
KW - elasticity
KW - fruit fly
KW - insect flight
KW - resonance
KW - thorax
UR - http://www.scopus.com/inward/record.url?scp=85158816706&partnerID=8YFLogxK
U2 - 10.1088/1748-3190/accc23
DO - 10.1088/1748-3190/accc23
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37042474
AN - SCOPUS:85158816706
SN - 1748-3182
VL - 18
JO - Bioinspiration and Biomimetics
JF - Bioinspiration and Biomimetics
IS - 4
M1 - 046002
ER -