Spatial control of a classical electron state in a Rydberg atom by adiabatic synchronization

E. Grosfeld, L. Friedland

Research output: Contribution to journalArticlepeer-review

Abstract

An adiabatic synchronization approach is used to control orbital eccentricity and inclination of a highly excited electron in a hydrogen atom. The approach is based on persisting nonlinear phase locking (autoresonance) between spatially uniform, chirped frequency oscillating electric field, and the classical Keplerian motion of the electron in the atom. Efficient control in three dimensions is achieved by slow passage through and capture into different resonances. Scenarios guaranteeing the capture and continuing synchronization in the system are outlined, all requiring the driving field amplitude to exceed a threshold. The threshold scales as [formula presented] where A is the sweep rate of the driving frequency at resonance. The adiabatic synchronization allows one to accelerate the electron gradually by using dipolar fields, until approaching the stochastic ionization limit.

Original languageEnglish
Pages (from-to)8
Number of pages1
JournalPhysical Review E
Volume65
Issue number4
DOIs
StatePublished - 2002

Fingerprint

Dive into the research topics of 'Spatial control of a classical electron state in a Rydberg atom by adiabatic synchronization'. Together they form a unique fingerprint.

Cite this