TY - JOUR
T1 - Spectral integration by type II interneurons in dorsal cochlear nucleus
AU - Spirou, George A.
AU - Davis, Kevin A.
AU - Nelken, Israel
AU - Young, Eric D.
PY - 1999
Y1 - 1999
N2 - The type II unit is a prominent inhibitory interneuron in the dorsal cochlear nucleus (DCN), most likely recorded from vertical cells. Type II units are characterized by low rates of spontaneous activity, weak responses to broadband noise, and vigorous, narrowly tuned responses to tones. The weak responses of type II units to broadband stimuli are unusual for neurons in the lower auditory system and suggest that these units receive strong inhibitory inputs, most likely from onset-C neurons of the ventral cochlear nucleus. The question of the definition of type II units is considered here; the characteristics listed in the preceding text define a homogeneous type II group, but the boundary between this group and other low spontaneous rate neurons in DCN (type I/III units) is not yet clear. Type II units in decerebrate cats were studied using a two-tone paradigm to map inhibitory responses to tones and using noisebands of varying width to study the inhibitory processes evoked by broadband stimuli. Iontophoresis of bicuculline and strychnine and comparisons of two-tone responses between type II units and auditory nerve fibers were used to differentiate inhibitory processes occurring near the cell from two-tone suppression in the cochlea. For type II units, a significant inhibitory region is always seen with two- tone stimuli; the bandwidth of this region corresponds roughly to the previously reported excitatory bandwidth of onset-C neurons. Bandwidth widening experiments with noisebands show a monotonic decline in response as the bandwidth increases; these data are interpreted as revealing strong inhibitory inputs with properties more like onset-C neurons than any other response type in the lower auditory system. Consistent with these properties, iontophoresis of inhibitory antagonists produces a large increase in discharge rate to broadband noise, making tone and noise responses nearly equal.
AB - The type II unit is a prominent inhibitory interneuron in the dorsal cochlear nucleus (DCN), most likely recorded from vertical cells. Type II units are characterized by low rates of spontaneous activity, weak responses to broadband noise, and vigorous, narrowly tuned responses to tones. The weak responses of type II units to broadband stimuli are unusual for neurons in the lower auditory system and suggest that these units receive strong inhibitory inputs, most likely from onset-C neurons of the ventral cochlear nucleus. The question of the definition of type II units is considered here; the characteristics listed in the preceding text define a homogeneous type II group, but the boundary between this group and other low spontaneous rate neurons in DCN (type I/III units) is not yet clear. Type II units in decerebrate cats were studied using a two-tone paradigm to map inhibitory responses to tones and using noisebands of varying width to study the inhibitory processes evoked by broadband stimuli. Iontophoresis of bicuculline and strychnine and comparisons of two-tone responses between type II units and auditory nerve fibers were used to differentiate inhibitory processes occurring near the cell from two-tone suppression in the cochlea. For type II units, a significant inhibitory region is always seen with two- tone stimuli; the bandwidth of this region corresponds roughly to the previously reported excitatory bandwidth of onset-C neurons. Bandwidth widening experiments with noisebands show a monotonic decline in response as the bandwidth increases; these data are interpreted as revealing strong inhibitory inputs with properties more like onset-C neurons than any other response type in the lower auditory system. Consistent with these properties, iontophoresis of inhibitory antagonists produces a large increase in discharge rate to broadband noise, making tone and noise responses nearly equal.
UR - http://www.scopus.com/inward/record.url?scp=0032765755&partnerID=8YFLogxK
U2 - 10.1152/jn.1999.82.2.648
DO - 10.1152/jn.1999.82.2.648
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 10444663
AN - SCOPUS:0032765755
SN - 0022-3077
VL - 82
SP - 648
EP - 663
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 2
ER -