Abstract
A method is developed theoretically that will permit subwavelength measurements of objects that differ from the surroundings by any contrast enhancing parameter, such as fluorescence, second harmonic generation, reflection et cetera, using a statistical analysis of a picture obtained with a conventional light microscope through a set of subwavelength apertures or by repeated scanning of a laser beam over a defined area. It is demonstrated that with this methodology information can be obtained on microdomains that are thirty times less than the diameter of the aperture. For example, for apertures that are 0.3 μm in diameter it is possible to measure the dimension of objects that are ∼10 nm. A technology is described by which it is possible to produce masks with the appropriate apertures. Instrumentation is described that would allow for the realization of these statistical methodologies with either apertures or scanning laser beams.
Original language | English |
---|---|
Pages (from-to) | 1147-1155 |
Number of pages | 9 |
Journal | Biophysical Journal |
Volume | 60 |
Issue number | 5 |
DOIs | |
State | Published - 1991 |