Statistical mechanical study of hydrophobie interaction. II. Interaction among a set of M identical, spherical, and nonpolar solute particles

A. Ben-Naim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The tendency of a set of M solute particles to adhere to each other in various solvents is examined within the framework of classical statistical mechanics. The free energy change associated with the process of bringing M solute particles from infinity to a close configuration is split into two parts: a direct work against the intermolecular potential operating among the set, and an indirect part originating from the solvent properties. Various close configurations, for which pertinent experimental results are available, are examined. It is established that the indirect part of the free energy change, referred to as the hydrophobic part, is definitely anomalous in water compared with two relatively simpler solvents. The relative probabilities of clusterization of nonpolar solutes in water and in simple solvents is found to be greater, the larger the number of solute particles.

Original languageEnglish
Pages (from-to)3696-3711
Number of pages16
JournalThe Journal of Chemical Physics
Volume54
Issue number9
DOIs
StatePublished - 1971

Fingerprint

Dive into the research topics of 'Statistical mechanical study of hydrophobie interaction. II. Interaction among a set of M identical, spherical, and nonpolar solute particles'. Together they form a unique fingerprint.

Cite this