TY - JOUR
T1 - Strontium stable isotopes fractionate in the soil environments?
AU - Halicz, Ludwik
AU - Segal, Irina
AU - Fruchter, Noa
AU - Stein, Mordechai
AU - Lazar, Boaz
PY - 2008/7/30
Y1 - 2008/7/30
N2 - This study shows that the stable isotopic composition of strontium (the 88Sr/86Sr ratio expressed as δ88/86Sr value relative to the NBS987 standard) varies significantly in sedimentary terrestrial environments. The abundances of 86Sr, 88Sr isotopes were analyzed by MC-ICP-MS "Nu Plasma". All studied rocks and waters show δ88/86Sr values that are distinctly different from the measured NBS987 standard (yielding 0.01 ± 0.05‰, all errors are reported as 2σ). Modern corals from the northern Gulf of Aqaba, Red Sea yielded significantly different value than seawater (δ88/86Sr = 0.22 ± 0.07‰, compared to 0.35 ± 0.06‰, respectively), in an excellent correlation with the δ88/86Sr analyses reported by Fietzke and Eisenhauer [Fietzke, J., Eisenhauer, A., 2006. Determination of temperature-dependent stable strontium isotopes (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochm. Geophys. Geosyst. 7 (no. 8)] on other coral samples. All carbonate samples that originated in the marine environment: corals (porites and acropora from the northern Gulf of Aqaba); Cretaceous limestone and runoff from the Judea Mountains as well as lacustrine evaporitic aragonite (Dead Sea); and Red Sea and Atlantic seawater yield an average δ88/86Sr value of 0.26 ± 0.1‰. On the other hand, secondary materials (products of chemical weathering) from the terrestrial environment of the Judea Mountain such as terra rossa soil and speleothem calcite (that derives its Sr from the above-lying soil) yielded significantly lower δ88/86Sr value of - 0.17 ± 0.06‰. This indicates that strontium isotopes fractionate in the soil environment calling for a possible development of strontium isotopes as a tracer for processes of chemical weathering and pedogenesis.
AB - This study shows that the stable isotopic composition of strontium (the 88Sr/86Sr ratio expressed as δ88/86Sr value relative to the NBS987 standard) varies significantly in sedimentary terrestrial environments. The abundances of 86Sr, 88Sr isotopes were analyzed by MC-ICP-MS "Nu Plasma". All studied rocks and waters show δ88/86Sr values that are distinctly different from the measured NBS987 standard (yielding 0.01 ± 0.05‰, all errors are reported as 2σ). Modern corals from the northern Gulf of Aqaba, Red Sea yielded significantly different value than seawater (δ88/86Sr = 0.22 ± 0.07‰, compared to 0.35 ± 0.06‰, respectively), in an excellent correlation with the δ88/86Sr analyses reported by Fietzke and Eisenhauer [Fietzke, J., Eisenhauer, A., 2006. Determination of temperature-dependent stable strontium isotopes (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochm. Geophys. Geosyst. 7 (no. 8)] on other coral samples. All carbonate samples that originated in the marine environment: corals (porites and acropora from the northern Gulf of Aqaba); Cretaceous limestone and runoff from the Judea Mountains as well as lacustrine evaporitic aragonite (Dead Sea); and Red Sea and Atlantic seawater yield an average δ88/86Sr value of 0.26 ± 0.1‰. On the other hand, secondary materials (products of chemical weathering) from the terrestrial environment of the Judea Mountain such as terra rossa soil and speleothem calcite (that derives its Sr from the above-lying soil) yielded significantly lower δ88/86Sr value of - 0.17 ± 0.06‰. This indicates that strontium isotopes fractionate in the soil environment calling for a possible development of strontium isotopes as a tracer for processes of chemical weathering and pedogenesis.
KW - carbonates
KW - corals
KW - fractionation of strontium isotopes
KW - soils
KW - terra rossa
KW - terrestrial environments
UR - http://www.scopus.com/inward/record.url?scp=47749146091&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2008.05.005
DO - 10.1016/j.epsl.2008.05.005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:47749146091
SN - 0012-821X
VL - 272
SP - 406
EP - 411
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
IS - 1-2
ER -