Structural elements regulating the photochromicity in a cyanobacteriochrome

Xiuling Xu, Astrid Port, Christian Wiebeler, Kai Hong Zhao, Igor Schapiro*, Wolfgang Gärtner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z dark-adapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to-Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantum-chemical calculations in the framework of multiscale modeling to rationalize the absorption maxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.

Original languageAmerican English
Pages (from-to)2432-2440
Number of pages9
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number5
StatePublished - 4 Feb 2020

Bibliographical note

Publisher Copyright:
© 2020 National Academy of Sciences. All rights reserved.


  • Crystal structure
  • Photochromicity
  • Phytochrome
  • Theoretical chemistry


Dive into the research topics of 'Structural elements regulating the photochromicity in a cyanobacteriochrome'. Together they form a unique fingerprint.

Cite this