TY - JOUR
T1 - Structure and colonization dynamics of epiphytic bacterial communities and of selected component strains on tomato (Lycopersicon esculentum) leaves
AU - Jurkevitch, E. J.
AU - Shapira, G.
PY - 2000
Y1 - 2000
N2 - The sizes and compositions of bacterial populations found on leaves of greenhouse and field grown tomato plants were studied by dilution plating, fatty acid methyl ester analysis (FAME), and BIOLOG plates of isolates in pure cultures. In the greenhouse, overhead-irrigated plants sustained higher microbial populations (up to 105 cfu g-1) than soil-irrigated plants (103 cfu g-1). Strains isolated from overhead-irrigated plants grown in a vegetable garden (n = 216) and from greenhouse-grown plants (n = 114) were subjected to FAME analysis. Similarly, strains from soil-irrigated field-grown plants (n = 83) were identified using BIOLOG plates. In each case, populations were dominated by a few genera. When concentrated phyllosphere washes (CPW) were sprayed on greenhouse-grown, soil-irrigated plants, leaf bacterial populations of more than 105 CFU g-1 were sustained for 4 days; sterile buffer-sprayed leaves sustained less than 104 CFU g-1. No significant enrichment of any strain isolated from the sprayed leaves could be detected by FAME identification of randomly selected colonies. However, when recurring leaf saprophytic species (both Grampositive and Gram-negative) isolated from these experiments and from plants grown outdoors were tested for epiphytic colonization under stressful conditions, all could still be detected at various levels up to 4 days after inoculation, indicating differential epiphytic fitness. The non-epiphytic bacteria Escherichia coli and Azospirillum brasilense disappeared from the leaf surface within the same experimental period.
AB - The sizes and compositions of bacterial populations found on leaves of greenhouse and field grown tomato plants were studied by dilution plating, fatty acid methyl ester analysis (FAME), and BIOLOG plates of isolates in pure cultures. In the greenhouse, overhead-irrigated plants sustained higher microbial populations (up to 105 cfu g-1) than soil-irrigated plants (103 cfu g-1). Strains isolated from overhead-irrigated plants grown in a vegetable garden (n = 216) and from greenhouse-grown plants (n = 114) were subjected to FAME analysis. Similarly, strains from soil-irrigated field-grown plants (n = 83) were identified using BIOLOG plates. In each case, populations were dominated by a few genera. When concentrated phyllosphere washes (CPW) were sprayed on greenhouse-grown, soil-irrigated plants, leaf bacterial populations of more than 105 CFU g-1 were sustained for 4 days; sterile buffer-sprayed leaves sustained less than 104 CFU g-1. No significant enrichment of any strain isolated from the sprayed leaves could be detected by FAME identification of randomly selected colonies. However, when recurring leaf saprophytic species (both Grampositive and Gram-negative) isolated from these experiments and from plants grown outdoors were tested for epiphytic colonization under stressful conditions, all could still be detected at various levels up to 4 days after inoculation, indicating differential epiphytic fitness. The non-epiphytic bacteria Escherichia coli and Azospirillum brasilense disappeared from the leaf surface within the same experimental period.
UR - http://www.scopus.com/inward/record.url?scp=0034534287&partnerID=8YFLogxK
U2 - 10.1007/s002480000023
DO - 10.1007/s002480000023
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034534287
SN - 0095-3628
VL - 40
SP - 300
EP - 308
JO - Microbial Ecology
JF - Microbial Ecology
IS - 4
ER -