TY - JOUR
T1 - Structure-based prediction of binding peptides to MHC class I molecules
T2 - Application to a broad range of MHC alleles
AU - Schueler-Furman, Ora
AU - Altuvia, Yael
AU - Sette, Alessandro
AU - Margalit, Hanah
PY - 2000
Y1 - 2000
N2 - Specific binding of antigenic peptides to major histocompatibility complex (MHC) class I molecules is a prerequisite for their recognition by cytotoxic T-cells. Prediction of MHC-binding peptides must therefore be incorporated in any predictive algorithm attempting to identify immunodominant T-cell epitopes, based on the amino acid sequence of the protein antigen. Development of predictive algorithms based on experimental binding data requires experimental testing of a very large number of peptides. A complementary approach relies on the structural conservation observed in crystallographically solved peptide-MHC complexes. By this approach, the peptide structure in the MHC groove is used as a template upon which peptide candidates are threaded, and their compatibility to bind is evaluated by statistical pairwise potentials. Our original algorithm based on this approach used the pairwise potential table of Miyazawa and Jernigan (Miyazawa S, Jernigan RL, 1996, J Mol Biol 256:623-644) and succeeded to correctly identify good binders only for MHC molecules with hydrophobic binding pockets, probably because of the high emphasis of hydrophobic interactions in this table. A recently developed pairwise potential table by Betancourt and Thirumalai (Betancourt MR, Thirumalai D, 1999, Protein Sci 8:361-369) that is based on the Miyazawa and Jernigan table describes the hydrophilic interactions more appropriately. In this paper, we demonstrate how the use of this table, together with a new definition of MHC contact residues by which only residues that contribute exclusively to sequence specific binding are included, allows the development of an improved algorithm that can be applied to a wide range of MHC class I alleles.
AB - Specific binding of antigenic peptides to major histocompatibility complex (MHC) class I molecules is a prerequisite for their recognition by cytotoxic T-cells. Prediction of MHC-binding peptides must therefore be incorporated in any predictive algorithm attempting to identify immunodominant T-cell epitopes, based on the amino acid sequence of the protein antigen. Development of predictive algorithms based on experimental binding data requires experimental testing of a very large number of peptides. A complementary approach relies on the structural conservation observed in crystallographically solved peptide-MHC complexes. By this approach, the peptide structure in the MHC groove is used as a template upon which peptide candidates are threaded, and their compatibility to bind is evaluated by statistical pairwise potentials. Our original algorithm based on this approach used the pairwise potential table of Miyazawa and Jernigan (Miyazawa S, Jernigan RL, 1996, J Mol Biol 256:623-644) and succeeded to correctly identify good binders only for MHC molecules with hydrophobic binding pockets, probably because of the high emphasis of hydrophobic interactions in this table. A recently developed pairwise potential table by Betancourt and Thirumalai (Betancourt MR, Thirumalai D, 1999, Protein Sci 8:361-369) that is based on the Miyazawa and Jernigan table describes the hydrophilic interactions more appropriately. In this paper, we demonstrate how the use of this table, together with a new definition of MHC contact residues by which only residues that contribute exclusively to sequence specific binding are included, allows the development of an improved algorithm that can be applied to a wide range of MHC class I alleles.
KW - Knowledge-based prediction
KW - MHC class I
KW - Pairwise potential
KW - Peptide-protein binding
KW - Predictive algorithm
UR - http://www.scopus.com/inward/record.url?scp=0033820208&partnerID=8YFLogxK
U2 - 10.1110/ps.9.9.1838
DO - 10.1110/ps.9.9.1838
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11045629
AN - SCOPUS:0033820208
SN - 0961-8368
VL - 9
SP - 1838
EP - 1846
JO - Protein Science
JF - Protein Science
IS - 9
ER -