Subgroup Growth and Sieve Methods

Aner Shalev*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


We study the subgroup growth of profinite groups. We obtain a structure theorem for profinite groups of polynomial subgroup growth (PSG groups, for short), which essentially reduces their characterization to the case where the group is a cartesian product of finite simple groups. Analysing the growth behaviour of such cartesian products, we construct, for any real number a ≥ 1, a PSG profinite group whose degree is exactly a. Applications to the behaviour of the abscissa of convergence of the associated zeta function ∑an(G)n-sare drawn. We also show that there is no gap between polynomial and non-polynomial subgroup growth by constructing non-PSG groups whose subgroup growth is arbitrarily slow. Our arguments rely heavily on the use of sieve methods in number theory. In particular, a Bombieri-type short intervals theorem and the so-called Fundamental lemma in sieve theory play an essential role in this paper.

Original languageAmerican English
Pages (from-to)335-359
Number of pages25
JournalProceedings of the London Mathematical Society
Issue number2
StatePublished - 1997

Bibliographical note

Funding Information:
This research was supported by the Israel Science Foundation, administered by the Israel Academy of Sciences and Humanities. 1991 Mathematics Subject Classification: 20E07, 11N36.


Dive into the research topics of 'Subgroup Growth and Sieve Methods'. Together they form a unique fingerprint.

Cite this