TY - GEN
T1 - Subordinate class recognition using relational object models
AU - Hillel, Aharon Bar
AU - Weinshall, Daphna
PY - 2007
Y1 - 2007
N2 - We address the problem of sub-ordinate class recognition, like the distinction between different types of motorcycles. Our approach is motivated by observations from cognitive psychology, which identify parts as the defining component of basic level categories (like motorcycles), while sub-ordinate categories are more often defined by part properties (like 'jagged wheels'). Accordingly, we suggest a two-stage algorithm: First, a relational part based object model is learnt using unsegmented object images from the inclusive class (e.g., motorcycles in general). The model is then used to build a class-specific vector representation for images, where each entry corresponds to a model's part. In the second stage we train a standard discriminative classifier to classify subclass instances (e.g., cross motorcycles) based on the class-specific vector representation. We describe extensive experimental results with several subclasses. The proposed algorithm typically gives better results than a competing one-step algorithm, or a two stage algorithm where classification is based on a model of the sub-ordinate class.
AB - We address the problem of sub-ordinate class recognition, like the distinction between different types of motorcycles. Our approach is motivated by observations from cognitive psychology, which identify parts as the defining component of basic level categories (like motorcycles), while sub-ordinate categories are more often defined by part properties (like 'jagged wheels'). Accordingly, we suggest a two-stage algorithm: First, a relational part based object model is learnt using unsegmented object images from the inclusive class (e.g., motorcycles in general). The model is then used to build a class-specific vector representation for images, where each entry corresponds to a model's part. In the second stage we train a standard discriminative classifier to classify subclass instances (e.g., cross motorcycles) based on the class-specific vector representation. We describe extensive experimental results with several subclasses. The proposed algorithm typically gives better results than a competing one-step algorithm, or a two stage algorithm where classification is based on a model of the sub-ordinate class.
UR - http://www.scopus.com/inward/record.url?scp=84864048681&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84864048681
SN - 9780262195683
T3 - Advances in Neural Information Processing Systems
SP - 73
EP - 80
BT - Advances in Neural Information Processing Systems 19 - Proceedings of the 2006 Conference
T2 - 20th Annual Conference on Neural Information Processing Systems, NIPS 2006
Y2 - 4 December 2006 through 7 December 2006
ER -