Sulfur isotopic composition of gas-phase organic sulfur compounds provides insights into the thermal maturation of organic-rich rocks

Alon Amrani*, Yoav Oved Rosenberg, Alexander Meshoulam, Ward Said-Ahmad, Courtney Turich, Nathalie Luu, Tracey Jacksier, Artur Stankiewicz, Shimon Feinstein, Avital Shurki

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Volatile and gas phase organic sulfur compounds (VOSCs) are important components in subsurface reservoir fluids and despite their relatively low concentrations, can provide important information about organic matter origin, diagenetic transformation, thermal maturation, and oil and gas generation, expulsion, and migration. We present an approach for the utilization of VOSC concentration and compound specific S isotopes ratio (δ34S) data as a new geochemical tool to study natural gas origin and formation. We studied the formation pathways of VOSCs, their δ34S values, and interaction with an organic-rich sedimentary rock (or ‘source rock’) from the Ghareb Formation (Type II-S kerogen) deposited in an upwelling marine environment. The immature source rock was subjected to laboratory controlled thermal maturation. We used a semi-open, non-isothermal pyrolysis system heated between 200 and 440 °C, and analyzed the molecular composition and compound specific δ34S values of the evolved gases at various thermal maturity stages. Formation of VOSCs commenced at 206 °C, a temperature generally associated with less thermally mature systems, and typically before the onset of oil generation for similar organic-rich source rocks, allowing study of low thermal maturity conditions (∼0.3 %Roeq). Overall, the VOSCs obtained had δ34S values similar to the bulk kerogen values (mostly within 4‰). However, thiol (or mercaptan) δ34S values closely followed those of H2S (Δ34Sthiols-H2S = −1 ± 1‰) throughout the experiment. Ab-initio calculations for the S isotopic exchange between H2S and thiols were close to the experimental observations. This suggests that thiols rapidly attained equilibrium with H2S despite their very short residence time in the system (minutes to hours). Furthermore, throughout the experiment, the concentrations of the six different thiols were found to be proportional to the coexisting, concentration ratio of [H2]/[H2S]. The proportionality factors of the 6 different thiols strongly correlate with reported heats of formation (ΔHf°), further supporting the notion that the generation of thiols in the system rapidly reached equilibrium. At pyrolysis temperatures up to 350 °C, δ34S and concentration values of other VOSCs produced in the gas phase, including sulfides and thiophenes, probably represent generation from S-containing moieties in kerogen and bitumen with limited interaction with co-existing H2S. The reaction of hydrocarbons and H2S to produce VOSCs is inversely correlated with thermal stability, i.e. thiols > sulfides > thiophenes. Therefore, the δ34S values, concentrations and distributions of VOSCs can be utilized as a proxy for reaction extent and formation mechanism of petroleum and H2S, including primary generation by thermal maturation, or potentially other processes such as migration and thermochemical sulfate reduction. This work demonstrates a novel and useful geochemical tool to study the source and fate of natural gas in the subsurface.

Original languageEnglish
Pages (from-to)91-108
Number of pages18
JournalGeochimica et Cosmochimica Acta
Volume259
DOIs
StatePublished - 15 Aug 2019

Bibliographical note

Funding Information:
We thank Herold Vinegar and Yuval Bartov (IEI Ltd) for providing the Ghareb Formation core sample that was used in the present study, and for assisting in the experimental work. The technical support of Leonardo Freitas and Edna Danon is highly appreciated. We appreciate the permission to publish these results from Air Liquide, Schlumberger and IEI Company. We gratefully acknowledge the financial support from Air Liquide. Y.O.R. and A.A acknowledges grant No. 15/16 from the Ministry of National Infrastructures Energy and Water Resources of Israel . A.A thanks the Israeli Science Foundation grant No. 1738/16 for partial support of this study. We thank the three anonymous reviewers for very constructive and useful comments that help to improve this paper.

Publisher Copyright:
© 2019 Elsevier Ltd

Keywords

  • Compound specific sulfur isotope
  • Ghareb Formation
  • Misotope exchange
  • Natural gas
  • Pyrolysis
  • Sour
  • Thiols

Fingerprint

Dive into the research topics of 'Sulfur isotopic composition of gas-phase organic sulfur compounds provides insights into the thermal maturation of organic-rich rocks'. Together they form a unique fingerprint.

Cite this