Superheavy Thermal Dark Matter

Hyungjin Kim, Eric Kuflik

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We propose a mechanism of elementary thermal dark matter with a mass up to 1014 GeV, within a standard cosmological history, whose relic abundance is determined solely by its interactions with the standard model, without violating the perturbative unitarity bound. The dark matter consists of many nearly degenerate particles which scatter with the standard model bath in a nearest-neighbor chain, and maintain chemical equilibrium with the standard model bath by in-equilibrium decays and inverse decays. The phenomenology includes super heavy elementary dark matter and heavy relics that decay at various epochs in the cosmological history, with implications for the cosmic microwave background, structure formation, and cosmic ray experiments.

Original languageAmerican English
Article number191801
JournalPhysical Review Letters
Volume123
Issue number19
DOIs
StatePublished - 8 Nov 2019

Bibliographical note

Funding Information:
We are grateful to Tim Cohen, Raffaele D'Agnolo, Jared Evans, Yuval Grossman, Kenny C. Y. Ng, Jinhong Park, Josh Ruderman, Juri Smirnov, and the Weizmann Institute HEP lunch group for useful discussions. We especially thank Yonit Hochberg for useful discussions and comments on the manuscript. The work of E. K. is supported by the Israel Science Foundation (Grant No. 1111/17), by the Binational Science Foundation (Grant No. 2016153), and by the I-CORE Program of the Planning Budgeting Committee (Grant No. 1937/12).

Funding Information:
In this Letter, we presented a new freeze-out mechanism for super heavy DM that freezes out with the SM within a standard cosmological history. The relic abundance is determined solely via its interactions with the SM. For a velocity-independent cross section, we showed the DM mass could be as large as m ∼ 10 14     GeV within the perturbative unitary limit. In an upcoming Letter, we show how velocity-dependent interactions, such as if the scattering was mediated by a light mediator, allow for DM to be as heavy as the Planck scale [25] . We are grateful to Tim Cohen, Raffaele D’Agnolo, Jared Evans, Yuval Grossman, Kenny C. Y. Ng, Jinhong Park, Josh Ruderman, Juri Smirnov, and the Weizmann Institute HEP lunch group for useful discussions. We especially thank Yonit Hochberg for useful discussions and comments on the manuscript. The work of E. K. is supported by the Israel Science Foundation (Grant No. 1111/17), by the Binational Science Foundation (Grant No. 2016153), and by the I-CORE Program of the Planning Budgeting Committee (Grant No. 1937/12). [1] 1 K. Griest and M. Kamionkowski , Phys. Rev. Lett. 64 , 615 ( 1990 ). PRLTAO 0031-9007 10.1103/PhysRevLett.64.615 [2] 2 L. Hui and E. D. Stewart , Phys. Rev. D 60 , 023518 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.60.023518 [3] 3 E. W. Kolb , D. J. H. Chung , and A. Riotto , AIP Conf. Proc. 484 , 91 ( 1999 ). APCPCS 0094-243X 10.1063/1.59655 [4] 4 D. J. H. Chung , E. W. Kolb , and A. Riotto , Phys. Rev. D 60 , 063504 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.60.063504 [5] 5 D. J. H. Chung , P. Crotty , E. W. Kolb , and A. Riotto , Phys. Rev. D 64 , 043503 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.64.043503 [6] 6 J. L. Feng , H. Tu , and H.-B. Yu , J. Cosmol. Astropart. Phys. 10 ( 2008 ) 043 . JCAPBP 1475-7516 10.1088/1475-7516/2008/10/043 [7] 7 K. Harigaya , M. Kawasaki , K. Mukaida , and M. Yamada , Phys. Rev. D 89 , 083532 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.083532 [8] 8 H. Davoudiasl , D. Hooper , and S. D. McDermott , Phys. Rev. Lett. 116 , 031303 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.031303 [9] 9 L. Randall , J. Scholtz , and J. Unwin , J. High Energy Phys. 03 ( 2016 ) 011 . JHEPFG 1029-8479 10.1007/JHEP03(2016)011 [10] 10 P. S. Bhupal Dev , R. N. Mohapatra , and Y. Zhang , J. High Energy Phys. 11 ( 2016 ) 077 . JHEPFG 1029-8479 10.1007/JHEP11(2016)077 [11] 11 K. Harigaya , T. Lin , and H. K. Lou , J. High Energy Phys. 09 ( 2016 ) 014 . JHEPFG 1029-8479 10.1007/JHEP09(2016)014 [12] 12 A. Berlin , D. Hooper , and G. Krnjaic , Phys. Lett. B 760 , 106 ( 2016 ). PYLBAJ 0370-2693 10.1016/j.physletb.2016.06.037 [13] 13 A. Berlin , D. Hooper , and G. Krnjaic , Phys. Rev. D 94 , 095019 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.095019 [14] 14 J. Bramante and J. Unwin , J. High Energy Phys. 02 ( 2017 ) 119 . JHEPFG 1029-8479 10.1007/JHEP02(2017)119 [15] 15 A. Berlin , Phys. Rev. Lett. 119 , 121801 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.121801 [16] 16 S. Hamdan and J. Unwin , Mod. Phys. Lett. A 33 , 1850181 ( 2018 ). MPLAEQ 0217-7323 10.1142/S021773231850181X [17] 17 M. Cirelli , Y. Gouttenoire , K. Petraki , and F. Sala , J. Cosmol. Astropart. Phys. 02 ( 2019 ) 014 . JCAPBP 1475-7516 10.1088/1475-7516/2019/02/014 [18] 18 E. Babichev , D. Gorbunov , and S. Ramazanov , Phys. Lett. B 794 , 69 ( 2019 ). PYLBAJ 0370-2693 10.1016/j.physletb.2019.05.030 [19] 19 S. Hashiba and J. Yokoyama , Phys. Rev. D 99 , 043008 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.043008 [20] 20 D. Hooper , G. Krnjaic , and S. D. McDermott , J. High Energy Phys. 08 ( 2019 ) 001 . JHEPFG 1029-8479 10.1007/JHEP08(2019)001 [21] 21 K. Harigaya , M. Ibe , K. Kaneta , W. Nakano , and M. Suzuki , J. High Energy Phys. 08 ( 2016 ) 151 . JHEPFG 1029-8479 10.1007/JHEP08(2016)151 [22] 22 I. Baldes and K. Petraki , J. Cosmol. Astropart. Phys. 09 ( 2017 ) 028 . JCAPBP 1475-7516 10.1088/1475-7516/2017/09/028 [23] 23 M. Geller , S. Iwamoto , G. Lee , Y. Shadmi , and O. Telem , J. High Energy Phys. 06 ( 2018 ) 135 . JHEPFG 1029-8479 10.1007/JHEP06(2018)135 [24] 24 J. Smirnov and J. F. Beacom , Phys. Rev. D 100 , 043029 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.100.043029 [25] 25 H. Kim and E. Kuflik (to be published). [26] 26 R. T. D’Agnolo , D. Pappadopulo , and J. T. Ruderman , Phys. Rev. Lett. 119 , 061102 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.061102 [27] 27 P. Bandyopadhyay , E. J. Chun , and J.-C. Park , J. High Energy Phys. 06 ( 2011 ) 129 . JHEPFG 1029-8479 10.1007/JHEP06(2011)129 [28] 28 J. A. Dror , E. Kuflik , and W. H. Ng , Phys. Rev. Lett. 117 , 211801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.211801 [29] 29 J. Kopp , J. Liu , T. R. Slatyer , X.-P. Wang , and W. Xue , J. High Energy Phys. 12 ( 2016 ) 033 . JHEPFG 1029-8479 10.1007/JHEP12(2016)033 [30] 30 S. Okawa , M. Tanabashi , and M. Yamanaka , Phys. Rev. D 95 , 023006 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.023006 [31] 31 J. A. Dror , E. Kuflik , B. Melcher , and S. Watson , Phys. Rev. D 97 , 063524 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.063524 [32] 32 A. Dery , J. A. Dror , L. S. Haskins , Y. Hochberg , and E. Kuflik , Phys. Rev. D 99 , 095023 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.095023 [33] 33 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.191801 for an alternative computation of the dark matter relic density for the N > 2 case. [34] 34 B. Audren , J. Lesgourgues , G. Mangano , P. D. Serpico , and T. Tram , J. Cosmol. Astropart. Phys. 12 ( 2014 ) 028 . JCAPBP 1475-7516 10.1088/1475-7516/2014/12/028 [35] 35 K. Ichiki , M. Oguri , and K. Takahashi , Phys. Rev. Lett. 93 , 071302 ( 2004 ). PRLTAO 0031-9007 10.1103/PhysRevLett.93.071302 [36] 36 S. Palomares-Ruiz , Phys. Lett. B 665 , 50 ( 2008 ). PYLBAJ 0370-2693 10.1016/j.physletb.2008.05.040 [37] 37 M. Lattanzi and J. W. F. Valle , Phys. Rev. Lett. 99 , 121301 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.121301 [38] 38 M. Lattanzi , AIP Conf. Proc. 966 , 163 ( 2008 ). APCPCS 0094-243X 10.1063/1.2836988 [39] 39 Y. Gong and X. Chen , Phys. Rev. D 77 , 103511 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.103511 [40] 40 S. De Lope Amigo , W. M.-Y. Cheung , Z. Huang , and S.-P. Ng , J. Cosmol. Astropart. Phys. 06 ( 2009 ) 005 . JCAPBP 1475-7516 10.1088/1475-7516/2009/06/005 [41] 41 A. H. G. Peter , Phys. Rev. D 81 , 083511 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.083511 [42] 42 A. H. G. Peter and A. J. Benson , Phys. Rev. D 82 , 123521 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.82.123521 [43] 43 M.-Y. Wang and A. R. Zentner , Phys. Rev. D 82 , 123507 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.82.123507 [44] 44 A. H. G. Peter , C. E. Moody , and M. Kamionkowski , Phys. Rev. D 81 , 103501 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.103501 [45] 45 R. Huo , Phys. Lett. B 701 , 530 ( 2011 ). PYLBAJ 0370-2693 10.1016/j.physletb.2011.06.053 [46] 46 S. Aoyama , K. Ichiki , D. Nitta , and N. Sugiyama , J. Cosmol. Astropart. Phys. 09 ( 2011 ) 025 . JCAPBP 1475-7516 10.1088/1475-7516/2011/09/025 [47] 47 M. Cirelli , E. Moulin , P. Panci , P. D. Serpico , and A. Viana , Phys. Rev. D 86 , 083506 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.083506 [48] 48 R. Essig , E. Kuflik , S. D. McDermott , T. Volansky , and K. M. Zurek , J. High Energy Phys. 11 ( 2013 ) 193 . JHEPFG 1029-8479 10.1007/JHEP11(2013)193 [49] 49 C. Blanco and D. Hooper , J. Cosmol. Astropart. Phys. 03 ( 2019 ) 019 . JCAPBP 1475-7516 10.1088/1475-7516/2019/03/019 [50] 50 R. Kleiss , W. J. Stirling , and S. D. Ellis , Comput. Phys. Commun. 40 , 359 ( 1986 ). CPHCBZ 0010-4655 10.1016/0010-4655(86)90119-0 [51] We approximate internal propagators as 1 / m 4 . One might wonder if the largest contribution arises from internal propagators being almost on shell. Such possibility arises only with a small phase space density, so the parametric dependence of the decay rate on m does not change. Nevertheless, internal propagators generally lead to larger Γ 1 , but this changes our estimate on N only by Δ N ∼ 1 – 2 for the range of N of our interest. [52] 52 T. R. Slatyer and C.-L. Wu , Phys. Rev. D 95 , 023010 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.023010 [53] 53 M. Ackermann ( Fermi-LAT Collaboration ) , Astrophys. J. 799 , 86 ( 2015 ). ASJOAB 0004-637X 10.1088/0004-637X/799/1/86 [54] 54a R. Abbasi ( IceCube Collaboration ) , Phys. Rev. D 83 , 092003 ( 2011 ); PRVDAQ 1550-7998 10.1103/PhysRevD.83.092003 54b R. Abbasi ( IceCube Collaboration ) Phys. Rev. D 84 , 0799029(E) ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.84.079902 [55] 55a P. Abreu ( Pierre Auger Collaboration ) , Phys. Rev. D 84 , 122005 ( 2011 ); PRVDAQ 1550-7998 10.1103/PhysRevD.84.122005 55b P. Abreu ( Pierre Auger Collaboration ) Phys. Rev. D 85 , 029902(E) ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.029902 [56] 56 V. Berezinsky , M. Kachelriess , and A. Vilenkin , Phys. Rev. Lett. 79 , 4302 ( 1997 ). PRLTAO 0031-9007 10.1103/PhysRevLett.79.4302 [57] 57a V. Kuzmin and I. Tkachev , Pis’ma Zh. Eksp. Teor. Fiz. 68 , 255 ( 1998 ) PZETAB 0370-274X 57b [ V. Kuzmin and I. Tkachev JETP Lett. 68 , 271 ( 1998 )]. JTPLA2 0021-3640 10.1134/1.567858 [58] 58 C. Barbot and M. Drees , Astropart. Phys. 20 , 5 ( 2003 ). APHYEE 0927-6505 10.1016/S0927-6505(03)00134-8 [59] 59 A. Esmaili , A. Ibarra , and O. L. G. Peres , J. Cosmol. Astropart. Phys. 11 ( 2012 ) 034 . JCAPBP 1475-7516 10.1088/1475-7516/2012/11/034 [60] 60 K. Murase and J. F. Beacom , J. Cosmol. Astropart. Phys. 10 ( 2012 ) 043 . JCAPBP 1475-7516 10.1088/1475-7516/2012/10/043 [61] 61 B. Feldstein , A. Kusenko , S. Matsumoto , and T. T. Yanagida , Phys. Rev. D 88 , 015004 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.015004 [62] 62 C. Rott , K. Kohri , and S. C. Park , Phys. Rev. D 92 , 023529 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.023529 [63] 63 R. Aloisio , S. Matarrese , and A. V. Olinto , J. Cosmol. Astropart. Phys. 08 ( 2015 ) 024 . JCAPBP 1475-7516 10.1088/1475-7516/2015/08/024 [64] 64 O. E. Kalashev and M. Y. Kuznetsov , Phys. Rev. D 94 , 063535 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.063535 [65] 65a O. E. Kalashev and M. Y. Kuznetsov , Pis’ma Zh. Eksp. Teor. Fiz. 106 , 65 ( 2017 ) PZETAB 0370-274X 10.7868/S0370274X17140028 65b [ O. E. Kalashev and M. Y. Kuznetsov JETP Lett. 106 , 73 ( 2017 )]. JTPLA2 0021-3640 10.1134/S0021364017140016 [66] 66 E. Alcantara , L. A. Anchordoqui , and J. F. Soriano , Phys. Rev. D 99 , 103016 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.103016 [67] 67 A. V. Olinto , Proc. Sci. , ICRC2017 ( 2018 ) 542 . [68] 68 M. Kawasaki , K. Kohri , T. Moroi , and Y. Takaesu , Phys. Rev. D 97 , 023502 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.023502 [69] 69 W. Hu and J. Silk , Phys. Rev. Lett. 70 , 2661 ( 1993 ). PRLTAO 0031-9007 10.1103/PhysRevLett.70.2661 [70] 70 J. Chluba and R. A. Sunyaev , Mon. Not. R. Astron. Soc. 419 , 1294 ( 2012 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2011.19786.x [71] 71 V. Poulin , J. Lesgourgues , and P. D. Serpico , J. Cosmol. Astropart. Phys. 03 ( 2017 ) 043 . JCAPBP 1475-7516 10.1088/1475-7516/2017/03/043 [72] 72 A. Kogut , J. Cosmol. Astropart. Phys. 07 ( 2011 ) 025 . JCAPBP 1475-7516 10.1088/1475-7516/2011/07/025 [73] 73 K. Vattis , S. M. Koushiappas , and A. Loeb , Phys. Rev. D 99 , 121302 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.121302 [74] 74 K. L. Pandey , T. Karwal , and S. Das , arXiv:1902.10636 . [75] 75 M.-Y. Wang , A. H. G. Peter , L. E. Strigari , A. R. Zentner , B. Arant , S. Garrison-Kimmel , and M. Rocha , Mon. Not. R. Astron. Soc. 445 , 614 ( 2014 ). MNRAA4 0035-8711 10.1093/mnras/stu1747 [76] 76 K. Enqvist , S. Nadathur , T. Sekiguchi , and T. Takahashi , J. Cosmol. Astropart. Phys. 09 ( 2015 ) 067 . JCAPBP 1475-7516 10.1088/1475-7516/2015/09/067 [77] 77 K. R. Dienes and B. Thomas , Phys. Rev. D 85 , 083523 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.083523 [78] 78 K. R. Dienes , J. Kumar , P. Stengel , and B. Thomas , Phys. Rev. D 99 , 043513 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.043513 [79] 79 H. Kim , E. Kuflik , and T. Silverwater (to be published). [80] 80 P. W. Anderson , Phys. Rev. 109 , 1492 ( 1958 ). PHRVAO 0031-899X 10.1103/PhysRev.109.1492 [81] 81 F. Izrailev , A. Krokhin , and N. Makarov , Phys. Rep. 512 , 125 ( 2012 ). PRPLCM 0370-1573 10.1016/j.physrep.2011.11.002 [82] 82 N. Craig and D. Sutherland , Phys. Rev. Lett. 120 , 221802 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.221802

Publisher Copyright:
© 2019 authors. Published by the American Physical Society.

Fingerprint

Dive into the research topics of 'Superheavy Thermal Dark Matter'. Together they form a unique fingerprint.

Cite this