TY - JOUR
T1 - Survival Analysis with Error-Prone Time-Varying Covariates
T2 - A Risk Set Calibration Approach
AU - Liao, Xiaomei
AU - Zucker, David M.
AU - Li, Yi
AU - Spiegelman, Donna
PY - 2011/3
Y1 - 2011/3
N2 - Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration (ORC) approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By recalibrating the measurement error model within each risk set, a risk set regression calibration (RRC) method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard's Health Professionals Follow-up Study (HPFS).
AB - Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration (ORC) approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By recalibrating the measurement error model within each risk set, a risk set regression calibration (RRC) method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard's Health Professionals Follow-up Study (HPFS).
KW - Cox proportional hazards model
KW - Measurement error
KW - Risk set regression calibration
KW - Time-varying covariates
UR - http://www.scopus.com/inward/record.url?scp=79952590204&partnerID=8YFLogxK
U2 - 10.1111/j.1541-0420.2010.01423.x
DO - 10.1111/j.1541-0420.2010.01423.x
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 20486928
AN - SCOPUS:79952590204
SN - 0006-341X
VL - 67
SP - 50
EP - 58
JO - Biometrics
JF - Biometrics
IS - 1
ER -