Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Original language | English |
---|---|
Article number | 471 |
Journal | Frontiers in Immunology |
Volume | 9 |
Issue number | MAR |
DOIs | |
State | Published - 9 Mar 2018 |
Bibliographical note
Publisher Copyright:© 2018 Velasquez, Stüve, Gentilini, Swallow, Bartel, Lycke, Barkan, Martina, Lujan, Kalay, van Kooyk, Sparwasser and Berod.
Keywords
- Ag85B
- DC-specific-ICAM3-grabbing-nonintegrin
- Dendritic cells
- Tuberculosis
- Vaccine