Targeting Ras with protein engineering

Atilio Tomazini, Julia M. Shifman*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review


Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras’s mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.

Original languageAmerican English
Pages (from-to)672-687
Number of pages16
Issue number1
StatePublished - Jul 2023

Bibliographical note

Publisher Copyright:
Copyright: © 2023 Tomazini and Shifman.


  • Ras oncogene
  • Ras targeting
  • anti-Ras therapeutics
  • protein design
  • protein engineering


Dive into the research topics of 'Targeting Ras with protein engineering'. Together they form a unique fingerprint.

Cite this