Tate Duality in Positive Dimension over Function Fields

Research output: Contribution to journalArticlepeer-review

Abstract

We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius ("Poitou-Tate without restrictions on the order,"2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.

Original languageEnglish
Pages (from-to)1-217
Number of pages217
JournalMemoirs of the American Mathematical Society
Volume290
Issue number1444
DOIs
StatePublished - Oct 2023

Bibliographical note

Publisher Copyright:
© 2023 American Mathematical Society.

Fingerprint

Dive into the research topics of 'Tate Duality in Positive Dimension over Function Fields'. Together they form a unique fingerprint.

Cite this