Abstract
Tensile fracture of coarse-grained (0.25 to 1 mm) cast austenitic manganese (Hadfield) steels has been investigated. Numerous surface discontinuities nucleate in coarse slip bands, on the heavily deformed surface of tensile specimens. These discontinuities do not propagate radially and final fracture results from central specimen cracking at higher strains. On the microscopic scale, bulk voids nucleate during the entire plastic deformation and they do not coalesce by shear localization (e.g., void-sheet) mechanism. Close voids coalesce by internal necking, whereas distant voids are bridged by means of small voids which nucleate at later stages of the plastic deformation. The high toughness of Hadfield steels is due to their high strain-hardening capacity which stabilizes the plastic deformation, and avoids shear localization and loss of load-bearing capacity. The observed dependence of measured mechanical properties on the specimen's geometry results from the development of a surface layer which characterizes the deformation of this coarse-grained material.
Original language | English |
---|---|
Pages (from-to) | 2269-2277 |
Number of pages | 9 |
Journal | Metallurgical Transactions A |
Volume | 19 A |
Issue number | 9 |
DOIs | |
State | Published - 1988 |