Text2Mesh: Text-Driven Neural Stylization for Meshes

Oscar Michel*, Roi Bar-On*, Richard Liu, Sagie Benaim, Rana Hanocka

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

200 Scopus citations

Abstract

In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term a neural style field network (NSF). In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes. Our code and results are available in our project webpage: https://threedle.github.io/text2meshl.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages13482-13492
Number of pages11
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • Image and video synthesis and generation
  • Vision + graphics

Fingerprint

Dive into the research topics of 'Text2Mesh: Text-Driven Neural Stylization for Meshes'. Together they form a unique fingerprint.

Cite this