The adaptive morphology of Bacillus subtilis biofilms: A defense mechanism against bacterial starvation

Sarah Gingichashvili*, Danielle Duanis-Assaf, Moshe Shemesh, John D.B. Featherstone, Osnat Feuerstein, Doron Steinberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Biofilms are commonly defined as accumulations of microbes, embedded in a self-secreted, polysaccharide-rich extra-cellular matrix. This study aimed to characterize specific morphological changes that occur in Bacillus subtilis biofilms under nutrient-limiting growth conditions. Under varying levels of nutrient depletion, colony-type biofilms were found to exhibit different rates of spatial expansion and green fluorescent protein production. Specifically, colony-type biofilms grown on media with decreased lysogeny broth content exhibited increased spatial expansion and more stable GFP production over the entire growth period. By modeling the surface morphology of colony-type biofilms using confocal and multiphoton microscopy, we analyzed the appearance of distinctive folds or “wrinkles” that form as a result of lysogeny broth content reduction in the solid agar growth media. When subjected to varying nutritional conditions, the channel-like folds were shown to alter their morphology; growth on nutrient-depleted media was found to trigger the formation of large and straight wrinkles connecting the colony core to its periphery. To test a possible functional role of the formed channels, a fluorescent analogue of glucose was used to demonstrate preferential native uptake of the molecules into the channels’ interiors which supports their possible role in the transport of molecules throughout biofilm structures.

Original languageAmerican English
Article number62
JournalMicroorganisms
Volume8
Issue number1
DOIs
StatePublished - Jan 2020

Bibliographical note

Funding Information:
Funding: This study was supported in part by the David Kline Foundation of the Canadian Friends of the Hebrew University, the US–Israel Binational Science Foundation (BSF), and Dr. Izador I. Cabakoff Research Endowment Fund.

Funding Information:
This study was supported in part by the David Kline Foundation of the Canadian Friends of the Hebrew University, the US?Israel Binational Science Foundation (BSF), and Dr. Izador I. Cabakoff Research Endowment Fund.

Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Bacillus subtilis
  • Biofilm
  • Morphology
  • Stress response

Fingerprint

Dive into the research topics of 'The adaptive morphology of Bacillus subtilis biofilms: A defense mechanism against bacterial starvation'. Together they form a unique fingerprint.

Cite this