The Bogoliubov excitation spectrum in anharmonic traps

E. Gershnabel*, N. Katz, E. Rowen, N. Davidson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We study the linearized Bogoliubov excitation spectrum of infinitely long anharmonically trapped Bose-Einstein condensates, with the aim of overcoming inhomogeneous broadening. We compare the Bogoliubov spectrum of a harmonic trap with that of a theoretical flat-bottom trap and find a significant reduction in the inhomogeneous broadening of the lineshape of Bogoliubov excitations. While the Bragg excitation spectrum for a condensate in a harmonic trap supports a number of radial modes, the flat trap is found to significantly support just one mode. We also study the excitation spectrum of realistic anharmonic traps with potentials of finite power dependence on the radial coordinate. We observe a correlation between the number of radial modes and the number of bound states in the effective potential of the quasi-particles. Finally, we compare a full numerical Gross-Pitaevskii simulation of a finite-length condensate to our model of infinite, linearized Gross-Pitaevskii excitations. We conclude that our model captures the essential physics.

Original languageAmerican English
Pages (from-to)1-11
Number of pages11
JournalNew Journal of Physics
Volume6
DOIs
StatePublished - 5 Oct 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'The Bogoliubov excitation spectrum in anharmonic traps'. Together they form a unique fingerprint.

Cite this