Abstract
Recent analysis of the structure of transcription regulation networks revealed several "network motifs": regulatory circuit patterns that occur much more frequently than in randomized networks. It is important to understand whether these network motifs have specific functions. One of the most significant network motifs is the coherent feedforward loop, in which transcription factor X regulates transcription factor Y, and both jointly regulate gene Z. On the basis of mathematical modeling and simulations, it was suggested that the coherent feedforward loop could serve as a sign-sensitive delay element: a circuit that responds rapidly to step-like stimuli in one direction (e.g. ON to OFF), and at a delay to steps in the opposite direction (OFF to ON). Is this function actually carried out by feedforward loops in living cells? Here, we address this experimentally, using a system with feedforward loop connectivity, the L-arabinose utilization system of Escherichiacoli. We measured responses to step-like cAMP stimuli at high temporal resolution and accuracy by means of green fluorescent protein reporters. We show that the arabinose system displays sign-sensitive delay kinetics. This type of kinetics is important for making decisions based on noisy inputs by filtering out fluctuations in input stimuli, yet allowing rapid response. This information-processing function may be performed by the feedforward loop regulation modules that are found in diverse systems from bacteria to humans.
Original language | English |
---|---|
Pages (from-to) | 197-204 |
Number of pages | 8 |
Journal | Journal of Molecular Biology |
Volume | 334 |
Issue number | 2 |
DOIs | |
State | Published - 21 Nov 2003 |
Externally published | Yes |
Bibliographical note
Funding Information:We thank C. Bargmann, D. Ginsberg, O. Hobert, S. Leibler, M. Magnasco, S. Quake, R. Schleif, E. Sontag, and all members of our laboratory for discussions. This work was supported by the Israel Science Foundation, a Minerva Junior Research Group, and the Human Frontiers Science project.
Keywords
- Computational biology
- Design principles
- Network motifs
- Systems biology