Abstract
We show that if μ is a compact cardinal then the depth of ultraproducts of less than μ many Boolean algebras is at most μ plus the ultraproduct of the depths of those Boolean algebras.
Original language | English |
---|---|
Pages (from-to) | 91-96 |
Number of pages | 6 |
Journal | Algebra Universalis |
Volume | 54 |
Issue number | 1 |
DOIs | |
State | Published - Oct 2005 |
Keywords
- Boolean algebras
- Cardinal invariants
- Set theory
- Ultraproducts