TY - JOUR
T1 - The differential effects of food restriction on 5-HT1A and 5-HT1B receptor mediated control of serotonergic transmission in the hippocampus and hypothalamus of rats
AU - Gur, Eitan
AU - Newman, Michael E.
AU - Avraham, Yosefa
AU - Dremencov, Eliyahu
AU - Berry, Elliot M.
PY - 2003/6
Y1 - 2003/6
N2 - Serotonergic pathways are considered important in the regulation of appetite. We have determined, in female rats, the effects of 4 weeks food restriction (FR) on serotonin function, using in vivo microdialysis. We recorded basal 5-HT release in the hypothalamus and hippocampus, and the sensitivity of the somatodendritic 5-HT1A autoreceptors in the raphe nuclei, and the nerve terminal 5-HT1B autoreceptors which together regulate the synthesis and release of 5-HT in these regions. Sensitivity of the somatodendritic 5-HT1A autoreceptors was assessed by measuring the reduction in extracellular 5-HT induced by systemic administration of the 5-HT1A receptor agonist 8-hydroxy-2-di-n-(propylamino)-tetralin (8-OH-DPAT), while sensitivity of nerve terminal 5-HT1B autoreceptors was measured by observing the increase in 5-HT release after systemic injection of the 5-HT1B receptor antagonist GR 127935. Basal release of 5-HT was not affected by FR. 8-OH-DPAT decreased 5-HT release in the hippocampus and hypothalamus in both groups, while GR 127935 increased 5-HT release in both areas in the control animals but not in the hypothalamus of the FR animals. Since 5-HT1B receptors regulate 5-HT release by a negative feedback mechanism, the decrease in sensitivity of 5-HT1B receptors in the hypothalamus of FR rats indicates increased serotonergic transmission in these rats. The fact that such differential effects on 5-HT release appeared only in the hypothalamus, the center of regulation of energy balance, suggests a compensatory role in FR by increasing 5-HT secretion, thereby reducing feeding behavior.
AB - Serotonergic pathways are considered important in the regulation of appetite. We have determined, in female rats, the effects of 4 weeks food restriction (FR) on serotonin function, using in vivo microdialysis. We recorded basal 5-HT release in the hypothalamus and hippocampus, and the sensitivity of the somatodendritic 5-HT1A autoreceptors in the raphe nuclei, and the nerve terminal 5-HT1B autoreceptors which together regulate the synthesis and release of 5-HT in these regions. Sensitivity of the somatodendritic 5-HT1A autoreceptors was assessed by measuring the reduction in extracellular 5-HT induced by systemic administration of the 5-HT1A receptor agonist 8-hydroxy-2-di-n-(propylamino)-tetralin (8-OH-DPAT), while sensitivity of nerve terminal 5-HT1B autoreceptors was measured by observing the increase in 5-HT release after systemic injection of the 5-HT1B receptor antagonist GR 127935. Basal release of 5-HT was not affected by FR. 8-OH-DPAT decreased 5-HT release in the hippocampus and hypothalamus in both groups, while GR 127935 increased 5-HT release in both areas in the control animals but not in the hypothalamus of the FR animals. Since 5-HT1B receptors regulate 5-HT release by a negative feedback mechanism, the decrease in sensitivity of 5-HT1B receptors in the hypothalamus of FR rats indicates increased serotonergic transmission in these rats. The fact that such differential effects on 5-HT release appeared only in the hypothalamus, the center of regulation of energy balance, suggests a compensatory role in FR by increasing 5-HT secretion, thereby reducing feeding behavior.
KW - 5HT
KW - 8-OH-DPAT
KW - Food restriction
KW - GR 127935
KW - Hippocampus
KW - Hypothalamus
UR - http://www.scopus.com/inward/record.url?scp=0038412640&partnerID=8YFLogxK
U2 - 10.1080/1028415031000115936
DO - 10.1080/1028415031000115936
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12793521
AN - SCOPUS:0038412640
SN - 1028-415X
VL - 6
SP - 169
EP - 175
JO - Nutritional Neuroscience
JF - Nutritional Neuroscience
IS - 3
ER -