TY - JOUR
T1 - The Dimethylsulfoniopropionate (DMSP) Lyase and Lyase-Like Cupin Family Consists of Bona Fide DMSP lyases as Well as Other Enzymes with Unknown Function
AU - Lei, Lei
AU - Cherukuri, Kesava Phaneendra
AU - Alcolombri, Uria
AU - Meltzer, Diana
AU - Tawfik, Dan S.
N1 - Publisher Copyright:
Copyright © 2018 American Chemical Society.
PY - 2018/6/19
Y1 - 2018/6/19
N2 - Marine organisms release dimethylsulfide (DMS) via cleavage of dimethylsulfoniopropionate (DMSP). Different genes encoding proteins with DMSP lyase activity are known, yet these exhibit highly variable levels of activity. Most assigned bacterial DMSP lyases, including DddK, DddL, DddQ, DddW, and DddY, appear to belong to one, cupin-like superfamily. Here, we attempted to define and map this superfamily dubbed cupin-DLL (DMSP lyases and lyase-like). To this end, we have pursued the characterization of various recombinant DMSP lyases belonging to this superfamily of metalloenzymes, and especially of DddY and DddL that seem to be the most active DMSP lyases in this superfamily. We identified two conserved sequence motifs that characterize this superfamily. These motifs include the metal-ligating residues that are absolutely essential and other residues including an active site tyrosine that seems to play a relatively minor role in DMSP lysis. We also identified a transition metal chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN), that selectively inhibits all known members of the cupin-DLL superfamily that exhibit DMSP lyase activity. A phylogenetic analysis indicated that the known DMSP lyase families are sporadically distributed suggesting that DMSP lyases evolved within this superfamily multiple times. However, unusually low specific DMSP lyase activity and genome context analysis suggest that DMSP lyase is not the native function of most cupin-DLL families. Indeed, a systematic profiling of substrate selectivity with a series of DMSP analogues indicated that some members, most distinctly DddY and DddL, are bona fide DMSP lyases, while others, foremost DddQ, may only exhibit promiscuous DMSP lyase activity.
AB - Marine organisms release dimethylsulfide (DMS) via cleavage of dimethylsulfoniopropionate (DMSP). Different genes encoding proteins with DMSP lyase activity are known, yet these exhibit highly variable levels of activity. Most assigned bacterial DMSP lyases, including DddK, DddL, DddQ, DddW, and DddY, appear to belong to one, cupin-like superfamily. Here, we attempted to define and map this superfamily dubbed cupin-DLL (DMSP lyases and lyase-like). To this end, we have pursued the characterization of various recombinant DMSP lyases belonging to this superfamily of metalloenzymes, and especially of DddY and DddL that seem to be the most active DMSP lyases in this superfamily. We identified two conserved sequence motifs that characterize this superfamily. These motifs include the metal-ligating residues that are absolutely essential and other residues including an active site tyrosine that seems to play a relatively minor role in DMSP lysis. We also identified a transition metal chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN), that selectively inhibits all known members of the cupin-DLL superfamily that exhibit DMSP lyase activity. A phylogenetic analysis indicated that the known DMSP lyase families are sporadically distributed suggesting that DMSP lyases evolved within this superfamily multiple times. However, unusually low specific DMSP lyase activity and genome context analysis suggest that DMSP lyase is not the native function of most cupin-DLL families. Indeed, a systematic profiling of substrate selectivity with a series of DMSP analogues indicated that some members, most distinctly DddY and DddL, are bona fide DMSP lyases, while others, foremost DddQ, may only exhibit promiscuous DMSP lyase activity.
UR - http://www.scopus.com/inward/record.url?scp=85048410920&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.8b00097
DO - 10.1021/acs.biochem.8b00097
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29561599
AN - SCOPUS:85048410920
SN - 0006-2960
VL - 57
SP - 3364
EP - 3377
JO - Biochemistry
JF - Biochemistry
IS - 24
ER -