TY - JOUR
T1 - The dissolution behavior of biogenic calcites in seawater and a possible role for magnesium and organic carbon
AU - Subhas, Adam V.
AU - Rollins, Nick E.
AU - Berelson, William M.
AU - Erez, Jonathan
AU - Ziveri, Patrizia
AU - Langer, Gerald
AU - Adkins, Jess F.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/9/20
Y1 - 2018/9/20
N2 - We present the dissolution kinetics of mixed planktic foraminifera, the benthic foraminifera Amphistegina, the coccolithophore Emiliania huxleyi, and the soft coral Rhythismia fulvum in seawater. Dissolution rates were measured across a large range of saturation states (Ω = 0.99–0.2) by dissolving 13C-labeled calcites in natural seawater undersaturated with respect to calcite. 13C-label was incorporated into biogenic calcite by culturing marine calcifiers in 13C-labeled natural seawater. Net dissolution rates were calculated as the slope of seawater δ13C versus time in a closed seawater-calcite system. All calcites show distinct, nonlinear, dependencies on seawater saturation state when normalized by mass or by specific surface area. For example, coccolith calcite dissolves at a similar rate to inorganic calcite near equilibrium when normalized by surface area, but dissolves much more slowly far from equilibrium. Mass loss from foraminiferal tests is correlated with a decrease in Mg/Ca of the solid, indicating that Mg-rich phases are preferentially leached out at even mild undersaturations. Dissolution also appears to strongly affect test B/Ca. Finally, we provide an interpretation of surface area-normalized biogenic calcite dissolution rates as a function of their Mg and organic carbon content. Near-equilibrium dissolution rates of all calcites measured here show a strong, nonlinear dependence on Mg content. Far-from-equilibrium dissolution rates decrease strongly as a function of organic carbon content. These results help to build a framework for understanding the underlying mechanisms of rate differences between biogenic calcites, and bear important implications for the dissolution of high-Mg calcites in view of ocean acidification.
AB - We present the dissolution kinetics of mixed planktic foraminifera, the benthic foraminifera Amphistegina, the coccolithophore Emiliania huxleyi, and the soft coral Rhythismia fulvum in seawater. Dissolution rates were measured across a large range of saturation states (Ω = 0.99–0.2) by dissolving 13C-labeled calcites in natural seawater undersaturated with respect to calcite. 13C-label was incorporated into biogenic calcite by culturing marine calcifiers in 13C-labeled natural seawater. Net dissolution rates were calculated as the slope of seawater δ13C versus time in a closed seawater-calcite system. All calcites show distinct, nonlinear, dependencies on seawater saturation state when normalized by mass or by specific surface area. For example, coccolith calcite dissolves at a similar rate to inorganic calcite near equilibrium when normalized by surface area, but dissolves much more slowly far from equilibrium. Mass loss from foraminiferal tests is correlated with a decrease in Mg/Ca of the solid, indicating that Mg-rich phases are preferentially leached out at even mild undersaturations. Dissolution also appears to strongly affect test B/Ca. Finally, we provide an interpretation of surface area-normalized biogenic calcite dissolution rates as a function of their Mg and organic carbon content. Near-equilibrium dissolution rates of all calcites measured here show a strong, nonlinear dependence on Mg content. Far-from-equilibrium dissolution rates decrease strongly as a function of organic carbon content. These results help to build a framework for understanding the underlying mechanisms of rate differences between biogenic calcites, and bear important implications for the dissolution of high-Mg calcites in view of ocean acidification.
KW - Chemical oceanography
KW - Dissolution kinetics
KW - Ocean acidification
UR - http://www.scopus.com/inward/record.url?scp=85052963532&partnerID=8YFLogxK
U2 - 10.1016/j.marchem.2018.08.001
DO - 10.1016/j.marchem.2018.08.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85052963532
SN - 0304-4203
VL - 205
SP - 100
EP - 112
JO - Marine Chemistry
JF - Marine Chemistry
ER -