TY - JOUR
T1 - The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem
AU - Levy, Avner
AU - Czosnek, Henryk
PY - 2003/12
Y1 - 2003/12
N2 - Abutilon mosaic virus (AbMV) and bean dwarf mosaic virus (BDMV) are two phylogenetically related bipartite begomoviruses. While AbMV is restricted to phloem, BDMV spreads to non-phloem tissues. Cell-to-cell and long-distance movement of AbMV and BDMV were investigated after replacing the coat protein (CP) gene with the reporter gene encoding the green fluorescence protein (GFP). The DNA-A and DNA-B genomic components of AbMV and BDMV, and their pseudorecombinants (PR), were delivered to bean (Phaseolus vulgaris) seedlings and detached leaves with DNA-coated microprojectiles. Virus-associated fluorescence was observed with the confocal microscope. Delivery of AbMV and BDMV GFP reporters showed that the epidermal tissue was the main recipient of the viral DNA; the DNA-A of the two viruses was unable to move out of the recipient cells. AbMV DNA-A co-inoculated with AbMV DNA-B did not move from cell to cell in the epidermis and did not reach the phloem. However, co-inoculation of AbMV DNA-A with BDMV DNA-B resulted in PR cell-to-cell movement out of the epidermis and long-distance movement in the phloem. In contrast, BDMV DNA-A moved from cell to cell and over a long distance when co-inoculated with either its own DNA-B or with the DNA-B of AbMV. Thus, the DNA-B of the non-phloem-limited BDMV overcame the phloem limitation of AbMV. In the reciprocal case, the DNA-B of the phloem-limited AbMV did not confine the non-phloem limited BDMV to the phloem. Hence, we assume that the DNA-A component of BDMV includes determinants involved in the movement pattern of the virus in addition to the DNA-B-encoded BC1 and BV1 which have previously been shown to be involved in virus movement. The results also confirm that the CP is not necessary for virus movement; however, replacing the CP of AbMV and BDMV with GFP resulted in a decrease in symptom severity. DNA-B was involved in symptom severity; the B component of BDMV produced symptoms more severe than those induced by that of AbMV, whether in wild-type PRs or in PRs with CP-GFP replacement. It is interesting to note that when the GFP gene under the control of the CaMV 35S promoter (35S-GFP) was delivered to the bean tissue, with or without the DNA-B component of BDMV, GFP was expressed but did not move from cell to cell. However, when the 35S-GFP was delivered together with BDMV DNA-A and DNA-B, GFP showed cell-to-cell movement in the epidermis but was restricted to these cells. Hence, infection of cells with a functional bipartite begomovirus may facilitate cell-to-cell movement of macromolecules.
AB - Abutilon mosaic virus (AbMV) and bean dwarf mosaic virus (BDMV) are two phylogenetically related bipartite begomoviruses. While AbMV is restricted to phloem, BDMV spreads to non-phloem tissues. Cell-to-cell and long-distance movement of AbMV and BDMV were investigated after replacing the coat protein (CP) gene with the reporter gene encoding the green fluorescence protein (GFP). The DNA-A and DNA-B genomic components of AbMV and BDMV, and their pseudorecombinants (PR), were delivered to bean (Phaseolus vulgaris) seedlings and detached leaves with DNA-coated microprojectiles. Virus-associated fluorescence was observed with the confocal microscope. Delivery of AbMV and BDMV GFP reporters showed that the epidermal tissue was the main recipient of the viral DNA; the DNA-A of the two viruses was unable to move out of the recipient cells. AbMV DNA-A co-inoculated with AbMV DNA-B did not move from cell to cell in the epidermis and did not reach the phloem. However, co-inoculation of AbMV DNA-A with BDMV DNA-B resulted in PR cell-to-cell movement out of the epidermis and long-distance movement in the phloem. In contrast, BDMV DNA-A moved from cell to cell and over a long distance when co-inoculated with either its own DNA-B or with the DNA-B of AbMV. Thus, the DNA-B of the non-phloem-limited BDMV overcame the phloem limitation of AbMV. In the reciprocal case, the DNA-B of the phloem-limited AbMV did not confine the non-phloem limited BDMV to the phloem. Hence, we assume that the DNA-A component of BDMV includes determinants involved in the movement pattern of the virus in addition to the DNA-B-encoded BC1 and BV1 which have previously been shown to be involved in virus movement. The results also confirm that the CP is not necessary for virus movement; however, replacing the CP of AbMV and BDMV with GFP resulted in a decrease in symptom severity. DNA-B was involved in symptom severity; the B component of BDMV produced symptoms more severe than those induced by that of AbMV, whether in wild-type PRs or in PRs with CP-GFP replacement. It is interesting to note that when the GFP gene under the control of the CaMV 35S promoter (35S-GFP) was delivered to the bean tissue, with or without the DNA-B component of BDMV, GFP was expressed but did not move from cell to cell. However, when the 35S-GFP was delivered together with BDMV DNA-A and DNA-B, GFP showed cell-to-cell movement in the epidermis but was restricted to these cells. Hence, infection of cells with a functional bipartite begomovirus may facilitate cell-to-cell movement of macromolecules.
KW - Abutilon mosaic virus
KW - Bean dwarf mosaic virus
KW - Begomovirus
KW - Green fluorescence protein
UR - http://www.scopus.com/inward/record.url?scp=3242687105&partnerID=8YFLogxK
U2 - 10.1023/B:PLAN.0000023662.25756.43
DO - 10.1023/B:PLAN.0000023662.25756.43
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 15082926
AN - SCOPUS:3242687105
SN - 0167-4412
VL - 53
SP - 789
EP - 803
JO - Plant Molecular Biology
JF - Plant Molecular Biology
IS - 6
ER -