The dynamics of radiation-driven, optically thick winds

Rong Feng Shen*, Ehud Nakar, Tsvi Piran

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes (M > LEdd/c2. In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, Lk, are super-Eddington with L < Lk and L ∞ Lk1/3. In the lower total luminosity regime, most of the energy is carried out by the radiation with Lk < L ≈ LEdd. In a third, low mass-loss regime (M < LEdd/c2), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.

Original languageEnglish
Pages (from-to)171-177
Number of pages7
JournalMonthly Notices of the Royal Astronomical Society
Volume459
Issue number1
DOIs
StatePublished - 11 Jun 2016

Bibliographical note

Publisher Copyright:
© 2016 The Authors.

Keywords

  • Diffusion
  • Hydrodynamics
  • Scattering
  • Stars: Winds, outflows

Fingerprint

Dive into the research topics of 'The dynamics of radiation-driven, optically thick winds'. Together they form a unique fingerprint.

Cite this