The elusive dynamics of aqueous permanganate photochemistry

Omer S. Haggag, Partha Malakar, Pavel Pokhilko, John F. Stanton, Anna I. Krylov*, Sanford Ruhman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Despite decades of investigation, mechanistic details of aqueous permanganate photo-decomposition remain unclear. Here we follow photoinduced dynamics of aqueous permanganate with femtosecond spectroscopy. Photoexcitation of KMnO4(aq) in the visible unleashes a sub-picosecond cascade of non-radiative transitions, leading to a distinct species which relaxes to S0with a lifetime of 16 ps. Tuning excitation to the UV shows increasing formation of a metastable intermediate, which outlives our ∼1 ns window of detection. Guided by electronic structure calculations and observations from three pulse excitation experiments, we assign the 16 ps species as the lowest Jahn-Teller component of the3T1triplet state and suggest a plausible sequence of radiationless transitions, which rapidly populate it. In conjunction with photodecomposition quantum yields obtained from the literature, these results demonstrate that aqueous permanganate photo-decomposition proceeds through a long-lived intermediate which is formed in parallel to the triplet in less than one ps upon UV absorption. The possibility that this is the postulated highly oxidative peroxo species, a fraction of which leads to the stable (MnO2+ O2) fragments, is discussed. Finally, periodic modulations detected in the pump-probe signal are assigned to ground-state vibrational coherences excited by impulsive Raman. Their wavelength-dependent absolute phases outline the borders between adjacent electronic transitions in the linear spectrum of permanganate.

Original languageEnglish
Pages (from-to)10043-10055
Number of pages13
JournalPhysical Chemistry Chemical Physics
Volume22
Issue number18
DOIs
StatePublished - 14 May 2020

Bibliographical note

Publisher Copyright:
© the Owner Societies 2020.

Fingerprint

Dive into the research topics of 'The elusive dynamics of aqueous permanganate photochemistry'. Together they form a unique fingerprint.

Cite this