TY - JOUR
T1 - The emergence of life on Earth
AU - Lahav, Noam
AU - Nir, Shlomo
AU - Elitzur, Avshalom C.
PY - 2001
Y1 - 2001
N2 - Combined top-down and bottom-up research strategies and the principle of biological continuity were employed in an attempt to reconstruct a comprehensive origin of life theory, which is an extension of the coevolution theory (Lahav and Nir, Origins of Life Evol. Biosphere (1997) 27, 377-395). The resulting theory of emergence of templated-information and functionality (ETIF) addresses the emergence of living entities from inanimate matter, and that of the central mechanisms of their further evolution. It proposes the emergence of short organic catalysts (peptides and proto-ribozymes) and feedback-loop systems, plus their template-and-sequence-directed (TSD) reactions, encompassing catalyzed replication and translation of populations of molecules organized as chemical-informational feedback loop entities, in a fluctuating (wetting-drying) environment, functioning as simplified extant molecular-biological systems. The feedback loops with their TSD systems are chemically and functionally continuous with extant living organisms and their emergence in an inanimate environment may be defined as the beginning of life. The ETIF theory considers the emergence of bio-homochirality, a primordial genetic code, information and the incorporation of primordial metabolic cycles and compartmentation into the emerging living entities. This theory helps to establish a novel measure of biological information, which focuses on its physical effects rather than on the structure of the message, and makes it possible to estimate the time needed for the transition from the inanimate state to the closure of the first feedback-loop systems. Moreover, it forms the basis for novel laboratory experiments and computer modeling, encompassing catalytic activity of short peptides and proto-RNAs and the emergence of bio-homochirality and feedback-loop systems.
AB - Combined top-down and bottom-up research strategies and the principle of biological continuity were employed in an attempt to reconstruct a comprehensive origin of life theory, which is an extension of the coevolution theory (Lahav and Nir, Origins of Life Evol. Biosphere (1997) 27, 377-395). The resulting theory of emergence of templated-information and functionality (ETIF) addresses the emergence of living entities from inanimate matter, and that of the central mechanisms of their further evolution. It proposes the emergence of short organic catalysts (peptides and proto-ribozymes) and feedback-loop systems, plus their template-and-sequence-directed (TSD) reactions, encompassing catalyzed replication and translation of populations of molecules organized as chemical-informational feedback loop entities, in a fluctuating (wetting-drying) environment, functioning as simplified extant molecular-biological systems. The feedback loops with their TSD systems are chemically and functionally continuous with extant living organisms and their emergence in an inanimate environment may be defined as the beginning of life. The ETIF theory considers the emergence of bio-homochirality, a primordial genetic code, information and the incorporation of primordial metabolic cycles and compartmentation into the emerging living entities. This theory helps to establish a novel measure of biological information, which focuses on its physical effects rather than on the structure of the message, and makes it possible to estimate the time needed for the transition from the inanimate state to the closure of the first feedback-loop systems. Moreover, it forms the basis for novel laboratory experiments and computer modeling, encompassing catalytic activity of short peptides and proto-RNAs and the emergence of bio-homochirality and feedback-loop systems.
KW - Bio-homochirality
KW - Biological information
KW - Catalytic peptide
KW - Feedback loop
KW - Genetic code's emergence
UR - http://www.scopus.com/inward/record.url?scp=0035049123&partnerID=8YFLogxK
U2 - 10.1016/S0079-6107(01)00003-7
DO - 10.1016/S0079-6107(01)00003-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 11311715
AN - SCOPUS:0035049123
SN - 0079-6107
VL - 75
SP - 75
EP - 120
JO - Progress in Biophysics and Molecular Biology
JF - Progress in Biophysics and Molecular Biology
IS - 1-2
ER -