The end-Permian mass extinction: A rapid volcanic CO 2 and CH 4-climatic catastrophe

Uwe Brand*, Renato Posenato, Rosemarie Came, Hagit Affek, Lucia Angiolini, Karem Azmy, Enzo Farabegoli

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

114 Scopus citations


The end of the Permian was a time of crisis that culminated in the Earth's greatest mass extinction. There is much speculation as to the cause for this catastrophe. Here we provide a full suite of high-resolution and coeval geochemical results (trace and rare earth elements, carbon, oxygen, strontium and clumped isotopes) reflecting ambient seawater chemistry and water quality parameters leading up to the end-Permian crisis. Preserved brachiopod low-Mg calcite-based seawater chemistry, supplemented by data from various localities, documents a sequence of interrelated primary events such as coeval flows of Siberian Trap continental flood basalts and emission of carbon dioxide leading to warm and extreme Greenhouse conditions with sea surface temperatures (SST) of ~36°C for the Late Permian. Although anoxia has been advanced as a cause for the mass extinction, most biotic and geochemical evidence suggest that it was briefly relevant during the early phase of the event and only in areas of upwelling, but not a general cause. Instead, we suggest that renewed and increased end-Permian Siberian Trap volcanic activity, about 2000years prior to the extinction event, released massive amounts of carbon dioxide and coupled with thermogenic methane emissions triggered extreme global warming and increased continental weathering. Eventually, these rapidly discharged greenhouse gas emissions, less than 1000years before the event, ushered in a global Hothouse period leading to extreme tropical SSTs of ~39°C and higher. Based on these sea surface temperatures, atmospheric CO 2 concentrations were about 1400ppmv and 3000ppmv for the Late and end-Permian, respectively. Leading up to the mass extinction, there was a brief interruption of the global warming trend when SST dropped, concurrent with a slight, but significant recovery in biodiversity in the western Tethys. It is possible that emission of volcanic sulfate aerosols resulted in brief cooling just after the onset of intensified warming during the end of the Permian. After aerosol deposition, global warming resumed and the biotic decline proceeded, and was accompanied by suboxia, in places of the surface ocean which culminated in the greatest mass extinction in Earth history.

Original languageAmerican English
Pages (from-to)121-144
Number of pages24
JournalChemical Geology
StatePublished - 5 Sep 2012
Externally publishedYes

Bibliographical note

Funding Information:
We thank M. Lozon, G. Hooper and M. Ouellette (Brock University) for technical assistance. Special thanks to the reviewers for their detailed and helpful comments on the manuscript. We acknowledge NSERC , NSF , Brock University , Memorial University , University of New Hampshire , Yale University , Institute of Biospheric Studies , Università di Ferrara , Università di Milano and Università di Bologna for financial support.


  • Continental erosion
  • End-Permian mass extinction
  • Extreme seawater temperatures
  • Primary bLMC geochemistry-strontium, oxygen, carbon and clumped isotopes, REE


Dive into the research topics of 'The end-Permian mass extinction: A rapid volcanic CO 2 and CH 4-climatic catastrophe'. Together they form a unique fingerprint.

Cite this