The impact of retinal configuration on the protein–chromophore interactions in bistable jumping spider rhodopsin-1

Jonathan R. Church, Jógvan Magnus Haugaard Olsen, Igor Schapiro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Bistable rhodopsins have two stable forms that can be interconverted by light. Due to their ability to act as photoswitches, these proteins are considered as ideal candidates for applications such as optogenetics. In this work, we analyze a recently crystalized bistable rhodopsin, namely the jumping spider rhodopsin-1 (JSR1). This rhodopsin exhibits identical absorption maxima for the parent and the photoproduct form, which impedes its broad application. We performed hybrid QM/MM simulations to study three isomers of the retinal chromophore: the 9-cis, 11-cis and all-trans configurations. The main aim was to gain insight into the specific interactions of each isomer and their impact on the absorption maximum in JSR1. The absorption spectra were computed using sampled snapshots from QM/MM molecular dynamics trajectories and compared to their experimental counterparts. The chromophore–protein interactions were analyzed by visualizing the electrostatic potential of the protein and projecting it onto the chromophore. It was found that the distance between a nearby tyrosine (Y126) residue plays a larger role in the predicted absorption maximum than the primary counterion (E194). Geometric differences between the isomers were also noted, including a structural change in the polyene chain of the chromophore, as well as changes in the nearby hydrogen bonding network.

Original languageAmerican English
Article number71
Issue number1
StatePublished - 1 Jan 2022

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.


  • Bistable
  • Jumping spider
  • QM/MM
  • Rhodopsins
  • Spectral tuning


Dive into the research topics of 'The impact of retinal configuration on the protein–chromophore interactions in bistable jumping spider rhodopsin-1'. Together they form a unique fingerprint.

Cite this