Abstract
Genomic imprinting is a phenomenon characterized by parent-of-origin- specific expression. The imprint is a mark established during germ-cell development to distinguish between the paternal and maternal copies of the imprinted genes. This imprint is maintained throughout embryo development and erased in the embryonic gonads to set the stage for a new imprint. DNA methylation is essential in this process as shown by the presence of differentially methylated regions (DMRs) in all imprinted genes and by the loss of imprinting in mice that are deficient in DNA methylation or upon deletion of DMRs. Here we show that a DMR in the imprinted Igf2r gene (which encodes the receptor for insulin-like growth factor type-2) that has been shown to be necessary for imprinting includes a 113-base-pair sequence that constitutes a methylation imprinting box. We identify two new cis-acting elements in this box that bind specific proteins: a de novo methylation signal and an allele-discrimination signal. We propose that this regulatory system, which we show to be involved in the establishment of differential methylation in the Igf2r DMR, represents a critical element in the imprinting process.
Original language | English |
---|---|
Pages (from-to) | 84-86 |
Number of pages | 3 |
Journal | Nature |
Volume | 397 |
Issue number | 6714 |
DOIs | |
State | Published - 7 Jan 1999 |