TY - JOUR
T1 - The influence of variables in product spaces
AU - Bourgain, Jean
AU - Kahn, Jeff
AU - Kalai, Gil
AU - Katznelson, Yitzhak
AU - Linial, Nathan
PY - 1992/2
Y1 - 1992/2
N2 - Let X be a probability space and let f: X n → {0, 1} be a measurable map. Define the influence of the k-th variable on f, denoted by I f (k), as follows: For u=(u 1, u 2,..., u n-1) ∈X n-1 consider the set l k (u)={(u 1, u 2,..., u k-1, t, u k,..., u n-1):t ∈X}. {Mathematical expression} More generally, for S a subset of [n]={1,..., n} let the influence of S on f, denoted by I f (S), be the probability that assigning values to the variables not in S at random, the value of f is undetermined. Theorem 1:There is an absolute constant c 1 so that for every function f: X n → {0, 1}, with Pr(f -1(1))=p≤1/2, there is a variable k so that {Mathematical expression} Theorem 2:For every f: X n → {0, 1}, with Prob(f=1)=1/2, and every ε>0, there is S ⊂ [n], |S|=c 2(ε)n/log n so that I f (S)≥1-ε. These extend previous results by Kahn, Kalai and Linial for Boolean functions, i.e., the case X={0, 1}.
AB - Let X be a probability space and let f: X n → {0, 1} be a measurable map. Define the influence of the k-th variable on f, denoted by I f (k), as follows: For u=(u 1, u 2,..., u n-1) ∈X n-1 consider the set l k (u)={(u 1, u 2,..., u k-1, t, u k,..., u n-1):t ∈X}. {Mathematical expression} More generally, for S a subset of [n]={1,..., n} let the influence of S on f, denoted by I f (S), be the probability that assigning values to the variables not in S at random, the value of f is undetermined. Theorem 1:There is an absolute constant c 1 so that for every function f: X n → {0, 1}, with Pr(f -1(1))=p≤1/2, there is a variable k so that {Mathematical expression} Theorem 2:For every f: X n → {0, 1}, with Prob(f=1)=1/2, and every ε>0, there is S ⊂ [n], |S|=c 2(ε)n/log n so that I f (S)≥1-ε. These extend previous results by Kahn, Kalai and Linial for Boolean functions, i.e., the case X={0, 1}.
UR - http://www.scopus.com/inward/record.url?scp=51249165087&partnerID=8YFLogxK
U2 - 10.1007/BF02808010
DO - 10.1007/BF02808010
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:51249165087
SN - 0021-2172
VL - 77
SP - 55
EP - 64
JO - Israel Journal of Mathematics
JF - Israel Journal of Mathematics
IS - 1-2
ER -