The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

Yehouda Enzel*, Yochanan Kushnir, Jay Quade

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

59 Scopus citations


A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5. ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all year round, and the Indian summer monsoon, through dynamically induced air subsidence, can reduce rather than enhance summer rainfall in the Levant and neighboring deserts, including Arabia. Our summary suggests a widening to the north of the latitudinal range of the rainfall associated with the North African summer monsoon moisture crossing the Red Sea to the east. We discuss other mechanisms that could have potentially contributed to the formation and maintaining of the modest paleo-wetlands.

Original languageAmerican English
Pages (from-to)69-91
Number of pages23
JournalGlobal and Planetary Change
StatePublished - 1 Jun 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier B.V.


  • African monsoon
  • Arabia
  • Holocene paleoclimate
  • ITCZ
  • Indian monsoon
  • Lake
  • Somali jet


Dive into the research topics of 'The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons'. Together they form a unique fingerprint.

Cite this